Home
×

Dacite
Dacite

Quartzite
Quartzite



ADD
Compare
X
Dacite
X
Quartzite

Dacite vs Quartzite

Add ⊕
1 Definition
1.1 Definition
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone
1.2 History
1.2.1 Origin
Romania and Moldova, Europe
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
From quartz + -ite
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Foliated, Granular
2.2 Color
Bluish - Grey, Brown, Grey, Light to Dark Grey
Black, Blue, Brown, Green, Light Grey, Purple, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Vesicular
Lustrous
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Homes
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
Arrowheads, As Dimension Stone, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Jewellery, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, As armour rock for sea walls, Cemetery Markers, Commemorative Tablets, In aquifers, Laboratory bench tops, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones, Used in aquariums
4 Types
4.1 Types
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
Not Available
4.2 Features
Host Rock for Lead, Is one of the oldest rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
Quartzite forms from sandstone and the mineral quartz being put under extreme heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz
5.2.2 Compound Content
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2-2.25
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium Grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
115.00 N/mm2
Rank: 18 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Indiscernible
6.1.9 Toughness
Not Available
1.9
6.1.10 Specific Gravity
2.86-2.87
2.6-2.8
6.1.11 Transparency
Translucent
Transparent to Translucent
6.1.12 Density
2.77-2.771 g/cm3
2.32-2.42 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.75 kJ/Kg K
Rank: 18 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Israel, Russia, South Korea, Thailand, Turkey
7.1.2 Africa
Not Yet Found
Ethiopia, Morocco, South Africa, Zimbabwe
7.1.3 Europe
France, Greece, Romania, Scotland, Spain
England, Italy, Norway, Scotland, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Bahamas, Canada, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, South Australia, Western Australia
New Zealand, Queensland, Western Australia

Dacite vs Quartzite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dacite and Quartzite Reserves. Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite. Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dacite vs Quartzite information and Dacite vs Quartzite characteristics in the upcoming sections.

Dacite vs Quartzite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dacite vs Quartzite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dacite and Properties of Quartzite. Learn more about Dacite vs Quartzite in the next section. The interior uses of Dacite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Quartzite include Countertops, Decorative aggregates, Flooring and Homes. Due to some exceptional properties of Dacite and Quartzite, they have various applications in construction industry. The uses of Dacite in construction industry include As dimension stone, Construction aggregate, For road aggregate, Landscaping and that of Quartzite include Arrowheads, As dimension stone, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone.

More about Dacite and Quartzite

Here you can know more about Dacite and Quartzite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dacite and Quartzite consists of mineral content and compound content. The mineral content of Dacite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon and mineral content of Quartzite includes Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Dacite vs Quartzite, the texture, color and appearance plays an important role in determining the type of rock. Dacite is available in bluish - grey, brown, grey, light to dark grey colors whereas, Quartzite is available in black, blue, brown, green, light grey, purple, white, yellow colors. Appearance of Dacite is Vesicular and that of Quartzite is Lustrous. Properties of rock is another aspect for Dacite vs Quartzite. The hardness of Dacite is 2-2.25 and that of Quartzite is 6-7. The types of Dacite are Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite whereas types of Quartzite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dacite and Quartzite is white. The specific heat capacity of Dacite is 0.92 kJ/Kg K and that of Quartzite is 0.75 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dacite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Quartzite is heat resistant, impact resistant, pressure resistant, wear resistant.