Home
×

Carbonatite
Carbonatite

Anorthosite
Anorthosite



ADD
Compare
X
Carbonatite
X
Anorthosite

Carbonatite vs Anorthosite

1 Definition
1.1 Definition
Carbonatite is intrusive or extrusive igneous rock which is defined by mineralogic composition, consisting of greater than 50 percent carbonate minerals
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
1.2 History
1.2.1 Origin
Tanzania
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From any intrusive igneous rock, having a majority of carbonate minerals
From French anorthose plagioclase + -ite1
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular, Poikiloblastic
Foliated, Glassy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull, Banded and Foilated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Unknown, Unknown
As Dimension Stone, Cement Manufacture, for Road Aggregate
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux
Creating Artwork, Curling
4 Types
4.1 Types
Not Available
Proterozoic Anorthosite and Archean Anorthosite
4.2 Features
Available in lots of colors, Generally rough to touch, Is one of the oldest rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Carbonatites are intrusive or extrusive igneous rocks which are defined by mineralogic composition consisting of greater than 50 percent carbonate minerals and are formed due to low degrees of partial melting of rocks.
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
5.2 Composition
5.2.1 Mineral Content
Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
5.2.2 Compound Content
CaO, Carbon Dioxide, Sodium Oxide
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Chemical Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3
5-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Pearly to Subvitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Irregular
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.62-2.82
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.84-2.86 g/cm3
2.7-4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
Not Yet Found
7.1.2 Africa
Namibia, Nigeria, South Africa
Not Yet Found
7.1.3 Europe
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada
7.2.2 South America
Brazil
Bolivia, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand
Central Australia, South Australia, Western Australia

Carbonatite vs Anorthosite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Carbonatite and Anorthosite Reserves. Carbonatite is intrusive or extrusive igneous rock which is defined by mineralogic composition, consisting of greater than 50 percent carbonate minerals. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Carbonatite vs Anorthosite information and Carbonatite vs Anorthosite characteristics in the upcoming sections.

Carbonatite vs Anorthosite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Carbonatite vs Anorthosite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Carbonatite and Properties of Anorthosite. Learn more about Carbonatite vs Anorthosite in the next section. The interior uses of Carbonatite include Decorative aggregates and Interior decoration whereas the interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Carbonatite and Anorthosite, they have various applications in construction industry. The uses of Carbonatite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Unknown, Unknown and that of Anorthosite include As dimension stone, Cement manufacture, For road aggregate.

More about Carbonatite and Anorthosite

Here you can know more about Carbonatite and Anorthosite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Carbonatite and Anorthosite consists of mineral content and compound content. The mineral content of Carbonatite includes Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite and mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Carbonatite vs Anorthosite, the texture, color and appearance plays an important role in determining the type of rock. Carbonatite is available in black, brown, colourless, green, grey, pink, white colors whereas, Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors. Appearance of Carbonatite is Dull, Banded and Foilated and that of Anorthosite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Carbonatite vs Anorthosite. The hardness of Carbonatite is 3 and that of Anorthosite is 5-6. The types of Carbonatite are Not Available whereas types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Carbonatite and Anorthosite is white. The specific heat capacity of Carbonatite is Not Available and that of Anorthosite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Carbonatite is heat resistant, pressure resistant, water resistant whereas Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant.

Let Others Know
×