Home
×

Anthracite
Anthracite

Granophyre
Granophyre



ADD
Compare
X
Anthracite
X
Granophyre

Anthracite vs Granophyre

1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Granophyre is a type of granitic rock which consists of intergrown feldspar and quartz crystals in a medium to fine grained groundmass
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From German Granophyr, from Granit granite + Porphyr
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Granophyric
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Veined or Pebbled
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Bridges, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As Dimension Stone
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Curling, Gemstone, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Not Available
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
Granophyre is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Hornblade, Orthoclase, Plagioclase, Quartz
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Impact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Glacier Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.5
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Shiny
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
1.1-1.4
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
1.25-2.5 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.32 kJ/Kg K
Rank: 4 (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
Not Yet Found

Anthracite vs Granophyre Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Anthracite and Granophyre Reserves. Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster. Granophyre is a type of granitic rock which consists of intergrown feldspar and quartz crystals in a medium to fine grained groundmass. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Anthracite vs Granophyre information and Anthracite vs Granophyre characteristics in the upcoming sections.

Anthracite vs Granophyre Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Anthracite vs Granophyre characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Anthracite and Properties of Granophyre. Learn more about Anthracite vs Granophyre in the next section. The interior uses of Anthracite include Not yet used whereas the interior uses of Granophyre include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Anthracite and Granophyre, they have various applications in construction industry. The uses of Anthracite in construction industry include Cement manufacture, For road aggregate, Making natural cement, Steel production and that of Granophyre include As dimension stone.

More about Anthracite and Granophyre

Here you can know more about Anthracite and Granophyre. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Anthracite and Granophyre consists of mineral content and compound content. The mineral content of Anthracite includes Calcite, Clay, Clay Minerals and mineral content of Granophyre includes Hornblade, Orthoclase, Plagioclase, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Anthracite vs Granophyre, the texture, color and appearance plays an important role in determining the type of rock. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas, Granophyre is available in black, grey, orange, pink, white colors. Appearance of Anthracite is Veined or Pebbled and that of Granophyre is Veined or Pebbled. Properties of rock is another aspect for Anthracite vs Granophyre. The hardness of Anthracite is 1-1.5 and that of Granophyre is 6-7. The types of Anthracite are Semi-anthracite and Meta-anthracite whereas types of Granophyre are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Anthracite is black while that of Granophyre is white. The specific heat capacity of Anthracite is 1.32 kJ/Kg K and that of Granophyre is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Anthracite is heat resistant, water resistant whereas Granophyre is heat resistant, wear resistant.