Home
×

Anorthosite
Anorthosite

Adakite
Adakite



ADD
Compare
X
Anorthosite
X
Adakite

Anorthosite vs Adakite

1 Definition
1.1 Definition
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
1.2 History
1.2.1 Origin
Unknown
Adak, Aleutian Islands
1.2.2 Discoverer
Unknown
Defant and Drummond
1.3 Etymology
From French anorthose plagioclase + -ite1
From Adak, Aleutian Islands
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Glassy
Porphyritic
2.2 Color
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture, Small Figurines
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Commemorative Tablets, Pottery, Used in aquariums
4 Types
4.1 Types
Proterozoic Anorthosite and Archean Anorthosite
Not Available
4.2 Features
Generally rough to touch, Is one of the oldest rock
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
Aluminium Oxide, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Coastal Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
3-4
6.1.2 Grain Size
Coarse Grained
Fine to Medium Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
Bluish Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Pearly to Subvitreous
Grainy, Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.62-2.82
Not Available
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.7-4 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
India, Russia
7.1.2 Africa
Not Yet Found
Ethiopia, Somalia, South Africa
7.1.3 Europe
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, USA
7.2.2 South America
Bolivia, Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, South Australia, Western Australia
Not Yet Found

Anorthosite vs Adakite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Anorthosite and Adakite Reserves. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Anorthosite vs Adakite information and Anorthosite vs Adakite characteristics in the upcoming sections.

Anorthosite vs Adakite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Anorthosite vs Adakite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Anorthosite and Properties of Adakite. Learn more about Anorthosite vs Adakite in the next section. The interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Anorthosite and Adakite, they have various applications in construction industry. The uses of Anorthosite in construction industry include As dimension stone, Cement manufacture, For road aggregate and that of Adakite include As dimension stone, Cobblestones, Rail track ballast, Roadstone.

More about Anorthosite and Adakite

Here you can know more about Anorthosite and Adakite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Anorthosite and Adakite consists of mineral content and compound content. The mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene and mineral content of Adakite includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Anorthosite vs Adakite, the texture, color and appearance plays an important role in determining the type of rock. Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors whereas, Adakite is available in black, brown, light to dark grey colors. Appearance of Anorthosite is Layered, Banded, Veined and Shiny and that of Adakite is Dull and Soft. Properties of rock is another aspect for Anorthosite vs Adakite. The hardness of Anorthosite is 5-6 and that of Adakite is 3-4. The types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite whereas types of Adakite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Anorthosite is white while that of Adakite is bluish black. The specific heat capacity of Anorthosite is 0.84 kJ/Kg K and that of Adakite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant whereas Adakite is heat resistant, pressure resistant, wear resistant.