Home
×

Trondhjemite
Trondhjemite

Laterite
Laterite



ADD
Compare
X
Trondhjemite
X
Laterite

Trondhjemite vs Laterite

1 Definition
1.1 Definition
Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.
Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas
1.2 History
1.2.1 Origin
Tonale, Italy
India
1.2.2 Discoverer
Unknown
Francis Buchanan-Hamilton
1.3 Etymology
Not Available
From Latin later brick, tile + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Earthy, Massive, Porphyritic
2.2 Color
Black, Brown, Light to Dark Grey, White
Brown, Buff, Red
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Rough and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
Cobblestones, for Road Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, Source of bauxite, Used in aquariums
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Is one of the oldest rock, Typically speckled black and white.
Is one of the oldest rock, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
When alkali feldspar is extracted from granite, it changes to granitoid and later, it becomes trondhjemite with quartz as major mineral.
Laterite is a type of sedimentary rock which is generally a reddish weathering product of basalt.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene
5.2.2 Compound Content
NaCl, CaO, MgO, Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
2
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Applicable
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
2.86-3
Not Available
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.73 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
India
7.1.2 Africa
Egypt
East Africa, Western Africa
7.1.3 Europe
Finland, Germany, Italy, Romania, Sweden, Turkey
England, Romania, Scotland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, South Australia, Western Australia
Central Australia, Western Australia

Trondhjemite vs Laterite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Trondhjemite and Laterite Reserves. Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.. Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Trondhjemite vs Laterite information and Trondhjemite vs Laterite characteristics in the upcoming sections.

Trondhjemite vs Laterite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Trondhjemite vs Laterite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Trondhjemite and Properties of Laterite. Learn more about Trondhjemite vs Laterite in the next section. The interior uses of Trondhjemite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Laterite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Trondhjemite and Laterite, they have various applications in construction industry. The uses of Trondhjemite in construction industry include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate and that of Laterite include Cobblestones, For road aggregate, Landscaping, Roadstone.

More about Trondhjemite and Laterite

Here you can know more about Trondhjemite and Laterite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Trondhjemite and Laterite consists of mineral content and compound content. The mineral content of Trondhjemite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Laterite includes Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Trondhjemite vs Laterite, the texture, color and appearance plays an important role in determining the type of rock. Trondhjemite is available in black, brown, light to dark grey, white colors whereas, Laterite is available in brown, buff, red colors. Appearance of Trondhjemite is Banded and Foilated and that of Laterite is Rough and Banded. Properties of rock is another aspect for Trondhjemite vs Laterite. The hardness of Trondhjemite is 6-7 and that of Laterite is 2. The types of Trondhjemite are Not Available whereas types of Laterite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Trondhjemite is bluish black while that of Laterite is white. The specific heat capacity of Trondhjemite is 0.92 kJ/Kg K and that of Laterite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Trondhjemite is heat resistant, pressure resistant, wear resistant whereas Laterite is heat resistant, pressure resistant.