Home
×

Travertine
Travertine

Theralite
Theralite



ADD
Compare
X
Travertine
X
Theralite

Travertine vs Theralite

1 Definition
1.1 Definition
Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters
Theralite is a plutonic hylocrystalline igneous rock consisting of augite, olivine, calcic plagioclase and nepheline
1.2 History
1.2.1 Origin
Italy
Unknown
1.2.2 Discoverer
Marcus Vitruvius Pollio
Unknown
1.3 Etymology
From Italian travertino a kind of building stone, from Tiburs, adjective from Tibur (Tivoli), in Italy
From Greek to pursue
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded
Phaneritic
2.2 Color
Beige, Black, Blue, Brown, Grey, Red, White, Yellow
Dark Grey to Black
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Fibrous
Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork, Gemstone, Jewelry, Paper Industry, Pottery
Cemetery Markers, Commemorative Tablets, Creating Artwork, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
4 Types
4.1 Types
Not Available
Teschenite and Essexite
4.2 Features
Stalactites and stalagmites are formed from this rock, Surfaces are often shiny, Very fine grained rock
Smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Colosseum in Rome, Italy, Sacré Coeur in Paris, France, Trevi Fountain in Rome, Italy
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Travertine is a type of sedimentary rock formed when a river carries or transports pieces of broken rock which then undergo sedimentation. They are then subjected to high temperature and pressure hence forming travertine rock.
Theralite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Feldspar, Micas, Quartz
Augite, Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Ca, NaCl, CaO, Oxygen
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Splintery
Uneven, Splintery or Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Highly Porous
6.1.6 Luster
Dull to Pearly
Waxy and Dull
6.1.7 Compressive Strength
Flint
80.00 N/mm2
Rank: 23 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Non-Existent
6.1.9 Toughness
1
1.5
6.1.10 Specific Gravity
1.68
2.5-2.8
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.71 g/cm3
2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.09 kJ/Kg K
Rank: 8 (Overall)
0.74 kJ/Kg K
Rank: 19 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, Russia
India, Russia
7.1.2 Africa
Not Yet Found
South Africa
7.1.3 Europe
Austria, Italy, Portugal, United Kingdom
Germany, Greece, Italy, Scotland, Turkey
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Ecuador
Bolivia, Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland

Travertine vs Theralite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Travertine and Theralite Reserves. Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters. Theralite is a plutonic hylocrystalline igneous rock consisting of augite, olivine, calcic plagioclase and nepheline. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Travertine vs Theralite information and Travertine vs Theralite characteristics in the upcoming sections.

Travertine vs Theralite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Travertine vs Theralite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Travertine and Properties of Theralite. Learn more about Travertine vs Theralite in the next section. The interior uses of Travertine include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Theralite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Travertine and Theralite, they have various applications in construction industry. The uses of Travertine in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar and that of Theralite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate.

More about Travertine and Theralite

Here you can know more about Travertine and Theralite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Travertine and Theralite consists of mineral content and compound content. The mineral content of Travertine includes Calcite, Clay, Feldspar, Micas, Quartz and mineral content of Theralite includes Augite, Olivine, Plagioclase, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Travertine vs Theralite, the texture, color and appearance plays an important role in determining the type of rock. Travertine is available in beige, black, blue, brown, grey, red, white, yellow colors whereas, Theralite is available in dark grey to black colors. Appearance of Travertine is Fibrous and that of Theralite is Veined and Shiny. Properties of rock is another aspect for Travertine vs Theralite. The hardness of Travertine is 3-4 and that of Theralite is 7. The types of Travertine are Not Available whereas types of Theralite are Teschenite and Essexite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Travertine and Theralite is white. The specific heat capacity of Travertine is 1.09 kJ/Kg K and that of Theralite is 0.74 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Travertine is impact resistant, pressure resistant, wear resistant whereas Theralite is impact resistant, pressure resistant, wear resistant.