Definition
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
  
Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows
  
History
  
  
Origin
Unknown
  
New Zealand
  
Discoverer
Unknown
  
Patrick Marshall
  
Etymology
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
  
From Latin ignis fire + imber, imbr- shower of rain, storm cloud + -ite
  
Class
Igneous Rocks
  
Igneous Rocks
  
Sub-Class
Durable Rock, Medium Hardness Rock
  
Durable Rock, Medium Hardness Rock
  
Family
  
  
Group
Plutonic
  
Volcanic
  
Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
  
Fine Grained Rock, Opaque Rock
  
Texture
Earthy
  
Aphanitic
  
Color
Brown, Buff, Cream, Green, Grey, Pink, White
  
Beige, Black, Brown, Grey, Pink, White
  
Maintenance
Less
  
More
  
Durability
Durable
  
Durable
  
Water Resistant
Yes
  
Yes
  
Scratch Resistant
Yes
  
Yes
  
Stain Resistant
No
  
No
  
Wind Resistant
Yes
  
Yes
  
Acid Resistant
Yes
  
No
  
Appearance
Banded and Foilated
  
Dull, Vesicular and Foilated
  
Architecture
  
  
Interior Uses
Flooring, Homes, Hotels, Interior Decoration
  
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
  
Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
  
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
  
Other Architectural Uses
Curbing
  
Curbing
  
Industry
  
  
Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
  
Building houses or walls, Construction Aggregate
  
Medical Industry
Not Yet Used
  
Not Yet Used
  
Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
  
Artifacts, Monuments, Sculpture, Small Figurines
  
Other Uses
  
  
Commercial Uses
Cemetery Markers, Creating Artwork
  
Cemetery Markers, Commemorative Tablets, Creating Artwork
  
Types
Shonkinite
  
Not Available
  
Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
  
Always found as volcanic pipes over deep continental crust
  
Archaeological Significance
  
  
Monuments
Used
  
Used
  
Famous Monuments
Data Not Available
  
Data Not Available
  
Sculpture
Used
  
Used
  
Famous Sculptures
Data Not Available
  
Data Not Available
  
Pictographs
Used
  
Used
  
Petroglyphs
Used
  
Used
  
Figurines
Used
  
Used
  
Fossils
Absent
  
Absent
  
Formation
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
  
Ignimbrites are formed from very poorly sorted mixture of volcanic ash or tuff and pumice lapilli, commonly with scattered lithic fragments.
  
Composition
  
  
Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
  
Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz
  
Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
  
Ca, NaCl
  
Transformation
  
  
Metamorphism
Yes
  
Yes
  
Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
  
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
  
Weathering
Yes
  
Yes
  
Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
  
Biological Weathering, Chemical Weathering
  
Erosion
Yes
  
Yes
  
Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
  
Chemical Erosion, Coastal Erosion
  
Physical Properties
  
  
Hardness
5.5-6
  
4-6
  
Grain Size
Medium to Fine Coarse Grained
  
Fine Grained
  
Fracture
Not Available
  
Uneven
  
Streak
White
  
White
  
Porosity
Less Porous
  
Highly Porous
  
Luster
Subvitreous to Dull
  
Vitreous to Dull
  
Compressive Strength
150.00 N/mm2
  
14
243.80 N/mm2
  
5
Cleavage
Perfect
  
Not Available
  
Toughness
Not Available
  
Not Available
  
Specific Gravity
2.6-2.7
  
2.73
  
Transparency
Opaque
  
Opaque
  
Density
2.6-2.8 g/cm3
  
1-1.8 g/cm3
  
Thermal Properties
  
  
Specific Heat Capacity
0.92 kJ/Kg K
  
10
0.20 kJ/Kg K
  
25
Resistance
Heat Resistant, Impact Resistant, Wear Resistant
  
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
  
Deposits in Eastern Continents
  
  
Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
  
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
  
Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
  
Cameroon, Cape Verde, Chad, Djibouti, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Tanzania, Uganda
  
Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
  
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
  
Others
Not Yet Found
  
Antarctica, Hawaii Islands
  
Deposits in Western Continents
  
  
North America
USA
  
Canada, Costa Rica, Panama, USA
  
South America
Brazil, Chile
  
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador
  
Deposits in Oceania Continent
  
  
Australia
New Zealand, Queensland, South Australia, Western Australia
  
Central Australia, Western Australia
  
Syenite vs Ignimbrite Characteristics
Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Syenite vs Ignimbrite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Syenite and Properties of Ignimbrite. Learn more about Syenite vs Ignimbrite in the next section. The interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration whereas the interior uses of Ignimbrite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Syenite and Ignimbrite, they have various applications in construction industry. The uses of Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Ignimbrite include Building houses or walls, Construction aggregate.
More about Syenite and Ignimbrite
Here you can know more about Syenite and Ignimbrite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Syenite and Ignimbrite consists of mineral content and compound content. The mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Ignimbrite includes Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Syenite vs Ignimbrite, the texture, color and appearance plays an important role in determining the type of rock. Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Ignimbrite is available in beige, black, brown, grey, pink, white colors. Appearance of Syenite is Banded and Foilated and that of Ignimbrite is Dull, Vesicular and Foilated. Properties of rock is another aspect for Syenite vs Ignimbrite. The hardness of Syenite is 5.5-6 and that of Ignimbrite is 4-6. The types of Syenite are Shonkinite whereas types of Ignimbrite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Syenite and Ignimbrite is white. The specific heat capacity of Syenite is 0.92 kJ/Kg K and that of Ignimbrite is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Syenite is heat resistant, impact resistant, wear resistant whereas Ignimbrite is heat resistant, impact resistant, pressure resistant, wear resistant.