×

Syenite
Syenite

Borolanite
Borolanite



ADD
Compare
X
Syenite
X
Borolanite

Syenite vs Borolanite

1 Definition
1.1 Definition
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix
1.2 History
1.2.1 Origin
Unknown
Scotland
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
From Alkalic Igneous complex near Loch Borralan in northwest Scotland
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Granular
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Banded and Foilated
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Flooring, Homes, Hotels, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Cemetery Markers
4 Types
4.1 Types
Shonkinite
Not Available
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-65.5-6
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Conchoidal to Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Greasy to Dull
6.1.7 Compressive Strength
150.00 N/mm2150.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Poor
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6-2.72.6
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.6-2.8 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Brazil, Chile
Brazil, Chile, Colombia, Uruguay, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia

Syenite vs Borolanite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Syenite and Borolanite Reserves. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Syenite vs Borolanite information and Syenite vs Borolanite characteristics in the upcoming sections.

Syenite vs Borolanite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Syenite vs Borolanite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Syenite and Properties of Borolanite. Learn more about Syenite vs Borolanite in the next section. The interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration whereas the interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Syenite and Borolanite, they have various applications in construction industry. The uses of Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Borolanite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Syenite and Borolanite

Here you can know more about Syenite and Borolanite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Syenite and Borolanite consists of mineral content and compound content. The mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Syenite vs Borolanite, the texture, color and appearance plays an important role in determining the type of rock. Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Borolanite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Syenite is Banded and Foilated and that of Borolanite is Banded and Foilated. Properties of rock is another aspect for Syenite vs Borolanite. Hardness of Syenite and Borolanite is 5.5-6. The types of Syenite are Shonkinite whereas types of Borolanite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Syenite and Borolanite is white. The specific heat capacity of Syenite is 0.92 kJ/Kg K and that of Borolanite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Syenite is heat resistant, impact resistant, wear resistant whereas Borolanite is heat resistant, impact resistant, wear resistant.