Home
Compare Rocks


Slate vs Vogesite


Vogesite vs Slate


Definition

Definition
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism   
Vogesite is a porphyritic alkaline igneous rock and is a variety of Lamprophyre which is dominated by essential amphibole, usually hornblende, and potassic feldspar   

History
  
  

Origin
England   
Unknown   

Discoverer
Unknown   
Unknown   

Etymology
From Old French esclate, from esclat (French éclat)   
From the variety of Lamprophyre Greek lampros bright and shining + porphureos purple   

Class
Metamorphic Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Not Applicable   
Plutonic   

Other Categories
Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   

Texture

Texture
Foliated   
Porphyritic   

Color
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue   
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
No   

Wind Resistant
No   
No   

Acid Resistant
No   
Yes   

Appearance
Dull   
Dull, Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads   
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone   
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   

Medical Industry
Not Yet Used   
Taken as a Supplement for Calcium or Magnesium   

Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates   
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   

Types

Types
Not Available   
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite   

Features
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock   
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.   
Vogesite formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.   

Composition
  
  

Mineral Content
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon   
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
3-4   
5-6   

Grain Size
Very fine-grained   
Fine to Coarse Grained   

Fracture
Splintery   
Conchoidal   

Streak
Light to dark brown   
White   

Porosity
Less Porous   
Very Less Porous   

Luster
Dull   
Subvitreous to Dull   

Compressive Strength
30.00 N/mm2   
30
Not Available   

Cleavage
Slaty   
Conchoidal   

Toughness
1.2   
Not Available   

Specific Gravity
2.65-2.8   
2.86-2.87   

Transparency
Opaque   
Translucent to Opaque   

Density
2.6-2.8 g/cm3   
2.95-2.96 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.76 kJ/Kg K   
17
Not Available   

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Impact Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Turkey   
Russia   

Africa
Not Yet Found   
Angola, Botswana, Cameroon, Ethiopia, South Africa   

Europe
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom   
England, Hungary, Iceland, United Kingdom   

Others
Arctic   
Antarctica, Greenland   

Deposits in Western Continents
  
  

North America
USA   
Canada, Mexico, USA   

South America
Brazil   
Argentina, Colombia, Ecuador   

Deposits in Oceania Continent
  
  

Australia
Not Yet Found   
New South Wales, New Zealand, Queensland, South Australia, Western Australia   

Definition >>
<< All

Slate vs Vogesite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Slate and Vogesite Reserves. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. Vogesite is a porphyritic alkaline igneous rock and is a variety of Lamprophyre which is dominated by essential amphibole, usually hornblende, and potassic feldspar. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Slate vs Vogesite information and Slate vs Vogesite characteristics in the upcoming sections.

Compare Metamorphic Rocks

Slate vs Vogesite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Slate vs Vogesite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Slate and Properties of Vogesite. Learn more about Slate vs Vogesite in the next section. The interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads whereas the interior uses of Vogesite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Slate and Vogesite, they have various applications in construction industry. The uses of Slate in construction industry include As dimension stone and that of Vogesite include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Slate and Vogesite

Here you can know more about Slate and Vogesite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Slate and Vogesite consists of mineral content and compound content. The mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon and mineral content of Vogesite includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Metamorphic Rocks. When we have to compare Slate vs Vogesite, the texture, color and appearance plays an important role in determining the type of rock. Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors whereas, Vogesite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Slate is Dull and that of Vogesite is Dull, Banded and Foilated. Properties of rock is another aspect for Slate vs Vogesite. The hardness of Slate is 3-4 and that of Vogesite is 5-6. The types of Slate are Not Available whereas types of Vogesite are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Slate is light to dark brown while that of Vogesite is white. The specific heat capacity of Slate is 0.76 kJ/Kg K and that of Vogesite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Slate is heat resistant, impact resistant, pressure resistant, wear resistant whereas Vogesite is heat resistant, impact resistant.

Metamorphic Rocks

Metamorphic Rocks

» More Metamorphic Rocks

Compare Metamorphic Rocks

» More Compare Metamorphic Rocks