Home
Compare Rocks


Slate vs Luxullianite


Luxullianite vs Slate


Definition

Definition
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism   
Luxullianite is a rare type of granite, known for presence of clusters of radially arranged acicular tourmaline crystals which are enclosed by phenocrysts of orthoclase and quartz in a matrix of quartz, tourmaline, alkali feldspar, brown mica.   

History
  
  

Origin
England   
England   

Discoverer
Unknown   
Unknown   

Etymology
From Old French esclate, from esclat (French éclat)   
From the village of Luxulyan in Cornwall, England, where this variety of granite is found   

Class
Metamorphic Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Not Applicable   
Plutonic   

Other Categories
Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Opaque Rock   

Texture

Texture
Foliated   
Granular, Phaneritic   

Color
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue   
Black, Grey, Orange, Pink, White   

Maintenance
Less   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
No   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
No   
No   

Acid Resistant
No   
No   

Appearance
Dull   
Veined or Pebbled   

Uses

Architecture
  
  

Interior Uses
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads   
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone   
As Dimension Stone   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates   
Creating Artwork, Curling, Gemstone, Laboratory bench tops, Tombstones   

Types

Types
Not Available   
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite   

Features
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock   
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.   
Luxullianite is an intrusive igneous rock which is very hard, crystalline and is visibly homogeneous in texture. It is found in large plutons on the continents, i.e. in areas where the Earth's crust has been deeply eroded.   

Composition
  
  

Mineral Content
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon   
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
3-4   
6-7   

Grain Size
Very fine-grained   
Large and Coarse Grained   

Fracture
Splintery   
Not Available   

Streak
Light to dark brown   
White   

Porosity
Less Porous   
Less Porous   

Luster
Dull   
Dull to Grainy with Sporadic parts Pearly and Vitreous   

Compressive Strength
30.00 N/mm2   
30
175.00 N/mm2   
13

Cleavage
Slaty   
Not Available   

Toughness
1.2   
Not Available   

Specific Gravity
2.65-2.8   
2.6-2.7   

Transparency
Opaque   
Opaque   

Density
2.6-2.8 g/cm3   
2.6-2.8 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.76 kJ/Kg K   
17
0.79 kJ/Kg K   
16

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Turkey   
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   

Africa
Not Yet Found   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom   
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela   

Others
Arctic   
Not Yet Found   

Deposits in Western Continents
  
  

North America
USA   
Canada, USA   

South America
Brazil   
Not Yet Found   

Deposits in Oceania Continent
  
  

Australia
Not Yet Found   
Not Yet Found   

Definition >>
<< All

Slate vs Luxullianite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Slate and Luxullianite Reserves. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. Luxullianite is a rare type of granite, known for presence of clusters of radially arranged acicular tourmaline crystals which are enclosed by phenocrysts of orthoclase and quartz in a matrix of quartz, tourmaline, alkali feldspar, brown mica.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Slate vs Luxullianite information and Slate vs Luxullianite characteristics in the upcoming sections.

Compare Metamorphic Rocks

Slate vs Luxullianite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Slate vs Luxullianite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Slate and Properties of Luxullianite. Learn more about Slate vs Luxullianite in the next section. The interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads whereas the interior uses of Luxullianite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Slate and Luxullianite, they have various applications in construction industry. The uses of Slate in construction industry include As dimension stone and that of Luxullianite include As dimension stone.

More about Slate and Luxullianite

Here you can know more about Slate and Luxullianite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Slate and Luxullianite consists of mineral content and compound content. The mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon and mineral content of Luxullianite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Slate vs Luxullianite, the texture, color and appearance plays an important role in determining the type of rock. Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors whereas, Luxullianite is available in black, grey, orange, pink, white colors. Appearance of Slate is Dull and that of Luxullianite is Veined or Pebbled. Properties of rock is another aspect for Slate vs Luxullianite. The hardness of Slate is 3-4 and that of Luxullianite is 6-7. The types of Slate are Not Available whereas types of Luxullianite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Slate is light to dark brown while that of Luxullianite is white. The specific heat capacity of Slate is 0.76 kJ/Kg K and that of Luxullianite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Slate is heat resistant, impact resistant, pressure resistant, wear resistant whereas Luxullianite is heat resistant, wear resistant.

Metamorphic Rocks

Metamorphic Rocks

» More Metamorphic Rocks

Compare Metamorphic Rocks

» More Compare Metamorphic Rocks