Home
×

Skarn
Skarn

Pumice
Pumice



ADD
Compare
X
Skarn
X
Pumice

Skarn vs Pumice

Add ⊕
1 Definition
1.1 Definition
Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin
Pumice is a volcanic rock that consists of highly vesicular rough textured volcanic glass, which may or may not contain crystals
1.2 History
1.2.1 Origin
USA, Australia
Spain
1.2.2 Discoverer
Tornebohm
Unknown
1.3 Etymology
From an old Swedish mining term originally used to describe a type of silicate gangue or waste rock.
From Old French pomis, from a Latin dialect variant of pumex
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Mud-rich, Rough
Vesicular
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Beige, Colourless, Grey, Light Green, Light Grey, Pink, White, Yellow- grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Decorative Aggregates, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing, Powder
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Gold and Silver production, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, for Road Aggregate, In landscaping and horticulture, Making natural cement, Production of lightweight concrete blocks
3.2.2 Medical Industry
Not Applicable
As an abrasive in skin exfoliating products, In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Metallurgical Flux, Source of Magnesia (MgO)
As a traction material on snow-covered roads, As an abrasive in pencil erasers, Fine abrasive used for polishing, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Used in aquariums
4 Types
4.1 Types
Endoskarns
Scoria
4.2 Features
Host Rock for Lead, Zinc and Copper Deposits
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Skarn is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Pumice rock forms when the magma cools so quickly that atoms in the melt are not able to arrange themselves into a crystalline structure.
5.2 Composition
5.2.1 Mineral Content
Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite
Aluminum Oxides, Calcite, Carbonate, Iron Oxides, Silica
5.2.2 Compound Content
Au, CaO, Carbon Dioxide, Cu, Fe, MgO
Al, Aluminium Oxide, CaO, Carbon Dioxide, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Impact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.5
6
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Irregular
Planar
6.1.4 Streak
Light to dark brown
White, Greenish White or Grey
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Waxy and Dull
Earthy
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
51.20 N/mm2
Rank: 26 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Perfect
6.1.9 Toughness
2.4
3
6.1.10 Specific Gravity
2.86
2.86
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
0.25-0.3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.87 kJ/Kg K
Rank: 14 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Russia, Saudi Arabia, South Korea, Sri Lanka
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
South Africa, Western Africa
Ethiopia, Kenya, Tanzania
7.1.3 Europe
United Kingdom
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Bahamas, Barbados, Canada, Costa Rica, Cuba, Jamaica, Mexico, USA
7.2.2 South America
Brazil, Colombia, Paraguay
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New Zealand, Western Australia

Skarn vs Pumice Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Skarn and Pumice Reserves. Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin. Pumice is a volcanic rock that consists of highly vesicular rough textured volcanic glass, which may or may not contain crystals. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Skarn vs Pumice information and Skarn vs Pumice characteristics in the upcoming sections.

Skarn vs Pumice Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Skarn vs Pumice characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Skarn and Properties of Pumice. Learn more about Skarn vs Pumice in the next section. The interior uses of Skarn include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Pumice include Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Skarn and Pumice, they have various applications in construction industry. The uses of Skarn in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Gold and silver production, Manufacture of magnesium and dolomite refractories and that of Pumice include As dimension stone, Cement manufacture, For road aggregate, In landscaping and horticulture, Making natural cement, Production of lightweight concrete blocks.

More about Skarn and Pumice

Here you can know more about Skarn and Pumice. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Skarn and Pumice consists of mineral content and compound content. The mineral content of Skarn includes Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite and mineral content of Pumice includes Aluminum Oxides, Calcite, Carbonate, Iron Oxides, Silica. You can also check out the list of all Metamorphic Rocks. When we have to compare Skarn vs Pumice, the texture, color and appearance plays an important role in determining the type of rock. Skarn is available in black, brown, colourless, green, grey, white colors whereas, Pumice is available in beige, colourless, grey, light green, light grey, pink, white, yellow- grey colors. Appearance of Skarn is Dull and that of Pumice is Vesicular. Properties of rock is another aspect for Skarn vs Pumice. The hardness of Skarn is 6.5 and that of Pumice is 6. The types of Skarn are Endoskarns whereas types of Pumice are Scoria. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Skarn is light to dark brown while that of Pumice is white, greenish white or grey. The specific heat capacity of Skarn is 0.92 kJ/Kg K and that of Pumice is 0.87 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Skarn is heat resistant whereas Pumice is impact resistant, pressure resistant.