Home
×

Skarn
Skarn

Blue Granite
Blue Granite



ADD
Compare
X
Skarn
X
Blue Granite

Skarn vs Blue Granite

1 Definition
1.1 Definition
Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin
Blue Granite is an igneous rock and a variety of Larvikite, notable for the presence of thumbnail-sized blue crystals of feldspar
1.2 History
1.2.1 Origin
USA, Australia
Unknown
1.2.2 Discoverer
Tornebohm
Unknown
1.3 Etymology
From an old Swedish mining term originally used to describe a type of silicate gangue or waste rock.
From the color of rock, Blue
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Mud-rich, Rough
Phaneritic
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Decorative Aggregates, Floor Tiles, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Gold and Silver production, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Applicable
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Metallurgical Flux, Source of Magnesia (MgO)
Cemetery Markers, Commemorative Tablets, Creating Artwork, Curling
4 Types
4.1 Types
Endoskarns
Not Available
4.2 Features
Host Rock for Lead, Zinc and Copper Deposits
Available in lots of colors, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Skarn is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Blue Granite is an igneous rock which is a variety of Larvikite and is known mainly for the presence of thumbnail-sized crystals of feldspar.
5.2 Composition
5.2.1 Mineral Content
Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Au, CaO, Carbon Dioxide, Cu, Fe, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.5
6-7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Irregular
Not Available
6.1.4 Streak
Light to dark brown
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Waxy and Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Not Available
6.1.9 Toughness
2.4
Not Available
6.1.10 Specific Gravity
2.86
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.9-2.91 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Russia, Saudi Arabia, South Korea, Sri Lanka
Not Yet Found
7.1.2 Africa
South Africa, Western Africa
Not Yet Found
7.1.3 Europe
United Kingdom
Bulgaria, England, Germany, Norway, Romania, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
USA
7.2.2 South America
Brazil, Colombia, Paraguay
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Skarn vs Blue Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Skarn and Blue Granite Reserves. Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin. Blue Granite is an igneous rock and a variety of Larvikite, notable for the presence of thumbnail-sized blue crystals of feldspar. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Skarn vs Blue Granite information and Skarn vs Blue Granite characteristics in the upcoming sections.

Skarn vs Blue Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Skarn vs Blue Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Skarn and Properties of Blue Granite. Learn more about Skarn vs Blue Granite in the next section. The interior uses of Skarn include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Blue Granite include Decorative aggregates, Floor tiles, Flooring and Interior decoration. Due to some exceptional properties of Skarn and Blue Granite, they have various applications in construction industry. The uses of Skarn in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Gold and silver production, Manufacture of magnesium and dolomite refractories and that of Blue Granite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate.

More about Skarn and Blue Granite

Here you can know more about Skarn and Blue Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Skarn and Blue Granite consists of mineral content and compound content. The mineral content of Skarn includes Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite and mineral content of Blue Granite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Metamorphic Rocks. When we have to compare Skarn vs Blue Granite, the texture, color and appearance plays an important role in determining the type of rock. Skarn is available in black, brown, colourless, green, grey, white colors whereas, Blue Granite is available in black, brown, light to dark grey, white colors. Appearance of Skarn is Dull and that of Blue Granite is Shiny. Properties of rock is another aspect for Skarn vs Blue Granite. The hardness of Skarn is 6.5 and that of Blue Granite is 6-7. The types of Skarn are Endoskarns whereas types of Blue Granite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Skarn is light to dark brown while that of Blue Granite is white. The specific heat capacity of Skarn is 0.92 kJ/Kg K and that of Blue Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Skarn is heat resistant whereas Blue Granite is heat resistant, impact resistant, pressure resistant.

Let Others Know
×