Home
Compare Rocks


Shonkinite vs Nepheline Syenite


Nepheline Syenite vs Shonkinite


Definition

Definition
Shonkinite is a rare, dark-coloured and intrusive igneous rock which contains augite and orthoclase feldspar as its primary constituents   
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz   

History
  
  

Origin
USA   
Unknown   

Discoverer
Unknown   
Unknown   

Etymology
From the name of Shonkin Sag ranges in the Highwood Mountains of north-central Montana, US   
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Not Applicable   
Plutonic   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Earthy   
Granular   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
No   
Yes   

Scratch Resistant
Yes   
No   

Stain Resistant
Yes   
Yes   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Banded and Foilated   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration   
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Cemetery Markers, Creating Artwork   

Types

Types
Not Available   
Borolanite and Litchfieldite   

Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable   
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Shonkinites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   

Composition
  
  

Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz   
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   
Burial Metamorphism, Impact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion, Water Erosion   
Chemical Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
5.5-6   

Grain Size
Medium to Fine Coarse Grained   
Fine Grained   

Fracture
Not Available   
Conchoidal to Uneven   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Subvitreous to Dull   
Greasy to Dull   

Compressive Strength
150.00 N/mm2   
14
150.00 N/mm2   
14

Cleavage
Perfect   
Poor   

Toughness
Not Available   
Not Available   

Specific Gravity
2.6-2.7   
2.6   

Transparency
Opaque   
Translucent to Opaque   

Density
2.6-2.8 g/cm3   
2.6 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.92 kJ/Kg K   
10
Not Available   

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland   
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   

Others
Not Yet Found   
Greenland   

Deposits in Western Continents
  
  

North America
USA   
Canada, USA   

South America
Brazil, Chile   
Brazil, Chile, Colombia, Uruguay, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Western Australia   
New Zealand, Queensland, South Australia, Tasmania, Western Australia   

Definition >>
<< All

Shonkinite vs Nepheline Syenite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Shonkinite and Nepheline Syenite Reserves. Shonkinite is a rare, dark-coloured and intrusive igneous rock which contains augite and orthoclase feldspar as its primary constituents. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Shonkinite vs Nepheline Syenite information and Shonkinite vs Nepheline Syenite characteristics in the upcoming sections.

Compare Igneous Rocks

Shonkinite vs Nepheline Syenite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Shonkinite vs Nepheline Syenite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Shonkinite and Properties of Nepheline Syenite. Learn more about Shonkinite vs Nepheline Syenite in the next section. The interior uses of Shonkinite include Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Shonkinite and Nepheline Syenite, they have various applications in construction industry. The uses of Shonkinite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Nepheline Syenite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Shonkinite and Nepheline Syenite

Here you can know more about Shonkinite and Nepheline Syenite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Shonkinite and Nepheline Syenite consists of mineral content and compound content. The mineral content of Shonkinite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Shonkinite vs Nepheline Syenite, the texture, color and appearance plays an important role in determining the type of rock. Shonkinite is available in brown, buff, cream, green, grey, pink, white colors whereas, Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Shonkinite is Banded and Foilated and that of Nepheline Syenite is Banded and Foilated. Properties of rock is another aspect for Shonkinite vs Nepheline Syenite. Hardness of Shonkinite and Nepheline Syenite is 5.5-6. The types of Shonkinite are Not Available whereas types of Nepheline Syenite are Borolanite and Litchfieldite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Shonkinite and Nepheline Syenite is white. The specific heat capacity of Shonkinite is 0.92 kJ/Kg K and that of Nepheline Syenite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Shonkinite is heat resistant, impact resistant, wear resistant whereas Nepheline Syenite is heat resistant, impact resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks