Home
×

Shale
Shale

Epidosite
Epidosite



ADD
Compare
X
Shale
X
Epidosite

Shale vs Epidosite

Add ⊕
1 Definition
1.1 Definition
Shale is a fine-grained sedimentary rock which is formed by the compaction of silt and clay-size mineral particles
Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From German Schalstein laminated limestone, and Schalgebirge layer of stone in stratified rock. From Old English scealu in its base sense of- thing that divides or separate,
Not Available
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Splintery
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
2.2 Color
Black, Brown, Buff, Green, Grey, Red, Yellow
Black, Brown, Light to Dark Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Muddy
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, Making natural cement, Raw material for the manufacture of mortar
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Pottery
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Red Shale, Black Shale, Green Shale, Grey Shale and Yellow Shale
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
4.2 Features
Easily splits into thin plates, Generally rough to touch, Very fine grained rock
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Jantar Mantar in India
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Shale forms when very fine-grained clay particles are deposited in water which settle at the bottom of water bodies. They are later compacted hence forming shale.
Epidosite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Albite, Biotite, Calcite, Chert, Chlorite, Dolomite, Hematite, Micas, Muscovite or Illite, Pyrite, Quartz, Silica, Sulfides
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Ca, Fe, Mg, Silicon Dioxide, Sodium
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3
6
6.1.2 Grain Size
Very fine-grained
Fine to Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White to Grey
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Dull
Not Available
6.1.7 Compressive Strength
Flint
95.00 N/mm2
Rank: 20 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Not Available
6.1.9 Toughness
2.6
2.3
6.1.10 Specific Gravity
2.2-2.8
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.4-2.8 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.39 kJ/Kg K
Rank: 23 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, China, India, Russia
India, Russia
7.1.2 Africa
Ethiopia, Kenya, Morocco, South Africa, Tanzania
South Africa
7.1.3 Europe
Austria, France, Germany, Greece, Italy, Romania, Scotland, Spain, Switzerland
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria, Western Australia
Not Yet Found

Shale vs Epidosite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Shale and Epidosite Reserves. Shale is a fine-grained sedimentary rock which is formed by the compaction of silt and clay-size mineral particles. Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Shale vs Epidosite information and Shale vs Epidosite characteristics in the upcoming sections.

Shale vs Epidosite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Shale vs Epidosite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Shale and Properties of Epidosite. Learn more about Shale vs Epidosite in the next section. The interior uses of Shale include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Epidosite include Decorative aggregates, Floor tiles, Homes, Hotels and Interior decoration. Due to some exceptional properties of Shale and Epidosite, they have various applications in construction industry. The uses of Shale in construction industry include Cement manufacture, Construction aggregate, For road aggregate, Making natural cement, Raw material for the manufacture of mortar and that of Epidosite include As dimension stone, Cobblestones, Rail track ballast, Roadstone.

More about Shale and Epidosite

Here you can know more about Shale and Epidosite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Shale and Epidosite consists of mineral content and compound content. The mineral content of Shale includes Albite, Biotite, Calcite, Chert, Chlorite, Dolomite, Hematite, Micas, Muscovite or Illite, Pyrite, Quartz, Silica, Sulfides and mineral content of Epidosite includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Shale vs Epidosite, the texture, color and appearance plays an important role in determining the type of rock. Shale is available in black, brown, buff, green, grey, red, yellow colors whereas, Epidosite is available in black, brown, light to dark grey colors. Appearance of Shale is Muddy and that of Epidosite is Dull and Soft. Properties of rock is another aspect for Shale vs Epidosite. The hardness of Shale is 3 and that of Epidosite is 6. The types of Shale are Red Shale, Black Shale, Green Shale, Grey Shale and Yellow Shale whereas types of Epidosite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Shale is white while that of Epidosite is white to grey. The specific heat capacity of Shale is 0.39 kJ/Kg K and that of Epidosite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Shale is heat resistant, impact resistant whereas Epidosite is heat resistant, pressure resistant, wear resistant.