×

Rhomb Porphyry
Rhomb Porphyry

Lignite
Lignite



ADD
Compare
X
Rhomb Porphyry
X
Lignite

Rhomb Porphyry and Lignite

1 Definition
1.1 Definition
Rhomb-porphyry is a porphyritic igneous rock with abundant wedge or lens shaped anorthoclase or feldspar phenocrysts
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
1.2 History
1.2.1 Origin
Unknown
France
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Latin term that means purple
From French, Latin lignum wood + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Amorphous, Glassy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
for Road Aggregate, Steel Production
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Electricity Generation
4 Types
4.1 Types
Not Available
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
4.2 Features
Host Rock for Lead
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Rhomb-porphyry is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Not Available
5.2.2 Compound Content
CaO, Cl, MgO
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Impact Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.51
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
310.00 N/mm2NA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.861.1-1.4
Granite
0 8.4
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3800-801 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg K1.26 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Bulgaria
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Not Yet Found
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, Victoria

All about Rhomb Porphyry and Lignite Properties

Know all about Rhomb Porphyry and Lignite properties here. All properties of rocks are important as they define the type of rock and its application. Rhomb Porphyry belongs to Igneous Rocks while Lignite belongs to Sedimentary Rocks.Texture of Rhomb Porphyry is Aphanitic to Porphyritic whereas that of Lignite is Amorphous, Glassy. Rhomb Porphyry appears Rough and Lignite appears Veined or Pebbled. The luster of Rhomb Porphyry is subvitreous to dull while that of Lignite is dull to vitreous to submetallic. Rhomb Porphyry is available in black, brown, colourless, green, grey, pink, white colors whereas Lignite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Rhomb Porphyry are an oil and gas reservoir, as a feed additive for livestock, metallurgical flux, soil conditioner, source of magnesia (mgo) and that of Lignite are electricity generation.