Home
×

Pumice
Pumice

Lignite
Lignite



ADD
Compare
X
Pumice
X
Lignite

Pumice and Lignite

Add ⊕
1 Definition
1.1 Definition
Pumice is a volcanic rock that consists of highly vesicular rough textured volcanic glass, which may or may not contain crystals
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
1.2 History
1.2.1 Origin
Spain
France
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Old French pomis, from a Latin dialect variant of pumex
From French, Latin lignum wood + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Vesicular
Amorphous, Glassy
2.2 Color
Beige, Colourless, Grey, Light Green, Light Grey, Pink, White, Yellow- grey
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Vesicular
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
Not Yet Used
3.1.3 Other Architectural Uses
Curbing, Powder
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, In landscaping and horticulture, Making natural cement, Production of lightweight concrete blocks
for Road Aggregate, Steel Production
3.2.2 Medical Industry
As an abrasive in skin exfoliating products, In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
Not Yet Used
3.3 Antiquity Uses
Artifacts
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
As a traction material on snow-covered roads, As an abrasive in pencil erasers, Fine abrasive used for polishing, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Used in aquariums
Electricity Generation
4 Types
4.1 Types
Scoria
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
4.2 Features
Host Rock for Lead
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Pumice rock forms when the magma cools so quickly that atoms in the melt are not able to arrange themselves into a crystalline structure.
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Aluminum Oxides, Calcite, Carbonate, Iron Oxides, Silica
Not Available
5.2.2 Compound Content
Al, Aluminium Oxide, CaO, Carbon Dioxide, MgO, Silicon Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
1
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Planar
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
Black
6.1.5 Porosity
Highly Porous
Highly Porous
6.1.6 Luster
Earthy
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
What Is Flint
51.20 N/mm2
Rank: 26 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
3
Not Available
6.1.10 Specific Gravity
2.86
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
0.25-0.3 g/cm3
800-801 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.87 kJ/Kg K
Rank: 14 (Overall)
1.26 kJ/Kg K
Rank: 5 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Ethiopia, Kenya, Tanzania
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Barbados, Canada, Costa Rica, Cuba, Jamaica, Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, Queensland, Victoria

All about Pumice and Lignite Properties

Know all about Pumice and Lignite properties here. All properties of rocks are important as they define the type of rock and its application. Pumice belongs to Igneous Rocks while Lignite belongs to Sedimentary Rocks.Texture of Pumice is Vesicular whereas that of Lignite is Amorphous, Glassy. Pumice appears Vesicular and Lignite appears Veined or Pebbled. The luster of Pumice is earthy while that of Lignite is dull to vitreous to submetallic. Pumice is available in beige, colourless, grey, light green, light grey, pink, white, yellow- grey colors whereas Lignite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Pumice are as a traction material on snow-covered roads, as an abrasive in pencil erasers, fine abrasive used for polishing, manufacture of soap, solvents, dyes, plastics and fibres, used in aquariums and that of Lignite are electricity generation.