Home
×

Picrite
Picrite

Slate
Slate



ADD
Compare
X
Picrite
X
Slate

Picrite vs Slate

Add ⊕
1 Definition
1.1 Definition
Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism
1.2 History
1.2.1 Origin
Hawaii Islands
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek pikros bitter + -ite, 19th century
From Old French esclate, from esclat (French éclat)
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Rough
Foliated
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White, Yellow
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Sintering Agent in Steel Industry to process Iron Ore, Cement Manufacture, for Road Aggregate, Manufacture of Magnesium and Dolomite Refractories, Roadstone, Used for flooring, stair treads, borders and window sills.
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
As a Feed Additive for Livestock, As armour rock for sea walls, Metallurgical Flux, Pottery, Source of Magnesia (MgO)
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates
4 Types
4.1 Types
Oceanite
Not Available
4.2 Features
Host Rock for Lead
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Picrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.
5.2 Composition
5.2.1 Mineral Content
Biotite, Olivine, Plagioclase, Pyrrhotite
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon
5.2.2 Compound Content
Al, CaO, Carbon Dioxide, Mg, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.8
3-4
6.1.2 Grain Size
Fine Grained
Very fine-grained
6.1.3 Fracture
Uneven
Splintery
6.1.4 Streak
White, Greenish White or Grey
Light to dark brown
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
189.00 N/mm2
Rank: 11 (Overall)
30.00 N/mm2
Rank: 30 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Slaty
6.1.9 Toughness
2.1
1.2
6.1.10 Specific Gravity
2.75-2.92
2.65-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
1.5-2.5 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.88 kJ/Kg K
Rank: 13 (Overall)
0.76 kJ/Kg K
Rank: 17 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Turkey
7.1.2 Africa
South Africa
Not Yet Found
7.1.3 Europe
Iceland
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Arctic
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Not Yet Found

Picrite vs Slate Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Picrite and Slate Reserves. Picrite is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Picrite vs Slate information and Picrite vs Slate characteristics in the upcoming sections.

Picrite vs Slate Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Picrite vs Slate characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Picrite and Properties of Slate. Learn more about Picrite vs Slate in the next section. The interior uses of Picrite include Countertops, Decorative aggregates, Homes and Interior decoration whereas the interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Picrite and Slate, they have various applications in construction industry. The uses of Picrite in construction industry include As a sintering agent in steel industry to process iron ore, Cement manufacture, For road aggregate, Manufacture of magnesium and dolomite refractories, Roadstone, Used for flooring, stair treads, borders and window sills. and that of Slate include As dimension stone.

More about Picrite and Slate

Here you can know more about Picrite and Slate. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Picrite and Slate consists of mineral content and compound content. The mineral content of Picrite includes Biotite, Olivine, Plagioclase, Pyrrhotite and mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Picrite vs Slate, the texture, color and appearance plays an important role in determining the type of rock. Picrite is available in black, brown, colourless, green, grey, pink, white, yellow colors whereas, Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors. Appearance of Picrite is Rough and Shiny and that of Slate is Dull. Properties of rock is another aspect for Picrite vs Slate. The hardness of Picrite is 6.8 and that of Slate is 3-4. The types of Picrite are Oceanite whereas types of Slate are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Picrite is white, greenish white or grey while that of Slate is light to dark brown. The specific heat capacity of Picrite is 0.88 kJ/Kg K and that of Slate is 0.76 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Picrite is heat resistant whereas Slate is heat resistant, impact resistant, pressure resistant, wear resistant.