Home
×

Peridotite
Peridotite

Diorite
Diorite



ADD
Compare
X
Peridotite
X
Diorite

Peridotite vs Diorite

1 Definition
1.1 Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
1.2 History
1.2.1 Origin
Pike County, U.S
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French, from peridot +‎ -ite
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Phaneritic
2.2 Color
Dark Greenish - Grey
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Creating Artwork, Curling
4 Types
4.1 Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
Not Available
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Typically speckled black and white.
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
6-7
6.1.2 Grain Size
Coarse Grained
Medium to Coarse Grained
6.1.3 Fracture
Irregular
Not Available
6.1.4 Streak
White
Bluish Black
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Shiny
Shiny
6.1.7 Compressive Strength
Flint
107.55 N/mm2
Rank: 19 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
2.1
6.1.10 Specific Gravity
3-3.01
2.8-3
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
3.1-3.4 g/cm3
2.8-3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.26 kJ/Kg K
Rank: 5 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
Not Yet Found
7.1.2 Africa
Morocco, South Africa
Egypt
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New Zealand, Western Australia

Peridotite vs Diorite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Peridotite and Diorite Reserves. Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle. Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Peridotite vs Diorite information and Peridotite vs Diorite characteristics in the upcoming sections.

Peridotite vs Diorite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Peridotite vs Diorite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Peridotite and Properties of Diorite. Learn more about Peridotite vs Diorite in the next section. The interior uses of Peridotite include Decorative aggregates and Interior decoration whereas the interior uses of Diorite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Peridotite and Diorite, they have various applications in construction industry. The uses of Peridotite in construction industry include As dimension stone, Cobblestones and that of Diorite include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate.

More about Peridotite and Diorite

Here you can know more about Peridotite and Diorite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Peridotite and Diorite consists of mineral content and compound content. The mineral content of Peridotite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene and mineral content of Diorite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Peridotite vs Diorite, the texture, color and appearance plays an important role in determining the type of rock. Peridotite is available in dark greenish - grey colors whereas, Diorite is available in black, brown, light to dark grey, white colors. Appearance of Peridotite is Rough and Shiny and that of Diorite is Shiny. Properties of rock is another aspect for Peridotite vs Diorite. The hardness of Peridotite is 5.5-6 and that of Diorite is 6-7. The types of Peridotite are Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite whereas types of Diorite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Peridotite is white while that of Diorite is bluish black. The specific heat capacity of Peridotite is 1.26 kJ/Kg K and that of Diorite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Peridotite is heat resistant, pressure resistant, wear resistant whereas Diorite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×