×

Peridotite
Peridotite

Metapelite
Metapelite



ADD
Compare
X
Peridotite
X
Metapelite

Peridotite and Metapelite

1 Definition
1.1 Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
Metapelite is an old and currently not widely used field geological term for a clay rich fine-grained clastic sediment or sedimentary rock, i.e. mud or a mudstone
1.2 History
1.2.1 Origin
Pike County, U.S
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French, from peridot +‎ -ite
From Pelos or clay in Greek
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Foliated
2.2 Color
Dark Greenish - Grey
Dark Greenish - Grey, Green, Light Green, Light Greenish Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Shiny
Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones
Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
Not Available
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Easily splits into thin plates, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Metapelite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Albite, Chlorite, Quartz
5.2.2 Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
Aluminium Oxide, CaO, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-65-6
Coal
1 7
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Irregular
Fibrous
6.1.4 Streak
White
Unknown
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Shiny
Earthy
6.1.7 Compressive Strength
107.55 N/mm2NA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
3-3.013.4-3.7
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
3.1-3.4 g/cm30-300 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.26 kJ/Kg K0.72 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
Not Yet Found
7.1.2 Africa
Morocco, South Africa
Western Africa
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Not Available
7.2.2 South America
Brazil
Brazil, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Central Australia, Western Australia

All about Peridotite and Metapelite Properties

Know all about Peridotite and Metapelite properties here. All properties of rocks are important as they define the type of rock and its application. Peridotite belongs to Igneous Rocks while Metapelite belongs to Metamorphic Rocks.Texture of Peridotite is Phaneritic whereas that of Metapelite is Foliated. Peridotite appears Rough and Shiny and Metapelite appears Banded. The luster of Peridotite is shiny while that of Metapelite is earthy. Peridotite is available in dark greenish - grey colors whereas Metapelite is available in dark greenish - grey, green, light green, light greenish grey colors. The commercial uses of Peridotite are creating artwork, gemstone, jewelry, source of chromite, platinum, nickel and garnet, source of diamonds and that of Metapelite are commemorative tablets, creating artwork.