×

Peridotite
Peridotite

Kenyte
Kenyte



ADD
Compare
X
Peridotite
X
Kenyte

Peridotite and Kenyte

Add ⊕
1 Definition
1.1 Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix
1.2 History
1.2.1 Origin
Pike County, U.S
Mount Kenya
1.2.2 Discoverer
Unknown
J. W. Gregory
1.3 Etymology
From French, from peridot +‎ -ite
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Glassy, Granular
2.2 Color
Dark Greenish - Grey
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Shiny
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
Not Available
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-65.5-6
Coal
1 7
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Irregular
Conchoidal to Uneven
6.1.4 Streak
White
White, Greenish White or Grey
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Shiny
Greasy to Dull
6.1.7 Compressive Strength
107.55 N/mm2150.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Imperfect
Poor
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
3-3.012.6
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Translucent to Opaque
6.1.12 Density
3.1-3.4 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.26 kJ/Kg KNA
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
7.1.2 Africa
Morocco, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Uruguay, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia

All about Peridotite and Kenyte Properties

Know all about Peridotite and Kenyte properties here. All properties of rocks are important as they define the type of rock and its application. Peridotite and Kenyte belong to Igneous Rocks.Texture of Peridotite is Phaneritic whereas that of Kenyte is Glassy, Granular. Peridotite appears Rough and Shiny and Kenyte appears Banded and Foilated. The luster of Peridotite is shiny while that of Kenyte is greasy to dull. Peridotite is available in dark greenish - grey colors whereas Kenyte is available in brown, buff, cream, green, grey, pink, white colors. The commercial uses of Peridotite are creating artwork, gemstone, jewelry, source of chromite, platinum, nickel and garnet, source of diamonds and that of Kenyte are cemetery markers, creating artwork.