Home
×

Nepheline Syenite
Nepheline Syenite

Pyroxenite
Pyroxenite



ADD
Compare
X
Nepheline Syenite
X
Pyroxenite

Nepheline Syenite vs Pyroxenite

1 Definition
1.1 Definition
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Clastic, Granular, Phaneritic, Porphyritic
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
Countertops, Decorative Aggregates, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
4 Types
4.1 Types
Borolanite and Litchfieldite
Clinopyroxenites, Orthopyroxenites and Websterites
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
7
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Uneven
6.1.4 Streak
White
White, Greenish White or Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Greasy to Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Irregular
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6
3.2-3.5
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm3
3.1-3.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
India, Russia
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
South Africa
7.1.3 Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Germany, Greece, Italy, Scotland, Turkey
7.1.4 Others
Greenland
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New Zealand, Queensland

Nepheline Syenite vs Pyroxenite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Nepheline Syenite and Pyroxenite Reserves. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Nepheline Syenite vs Pyroxenite information and Nepheline Syenite vs Pyroxenite characteristics in the upcoming sections.

Nepheline Syenite vs Pyroxenite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Nepheline Syenite vs Pyroxenite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Nepheline Syenite and Properties of Pyroxenite. Learn more about Nepheline Syenite vs Pyroxenite in the next section. The interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Pyroxenite include Countertops, Decorative aggregates, Interior decoration and Kitchens. Due to some exceptional properties of Nepheline Syenite and Pyroxenite, they have various applications in construction industry. The uses of Nepheline Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Pyroxenite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate.

More about Nepheline Syenite and Pyroxenite

Here you can know more about Nepheline Syenite and Pyroxenite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Nepheline Syenite and Pyroxenite consists of mineral content and compound content. The mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Pyroxenite includes Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Nepheline Syenite vs Pyroxenite, the texture, color and appearance plays an important role in determining the type of rock. Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors. Appearance of Nepheline Syenite is Banded and Foilated and that of Pyroxenite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Nepheline Syenite vs Pyroxenite. The hardness of Nepheline Syenite is 5.5-6 and that of Pyroxenite is 7. The types of Nepheline Syenite are Borolanite and Litchfieldite whereas types of Pyroxenite are Clinopyroxenites, Orthopyroxenites and Websterites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Nepheline Syenite is white while that of Pyroxenite is white, greenish white or grey. The specific heat capacity of Nepheline Syenite is Not Available and that of Pyroxenite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Nepheline Syenite is heat resistant, impact resistant, wear resistant whereas Pyroxenite is impact resistant, pressure resistant, wear resistant.

Let Others Know
×