×

Nepheline Syenite
Nepheline Syenite

Phyllite
Phyllite



ADD
Compare
X
Nepheline Syenite
X
Phyllite

Nepheline Syenite vs Phyllite

1 Definition
1.1 Definition
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China
From Greek phullon leaf + -ite1
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Phyllitic Sheen, Slaty
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black to Grey, Light Greenish Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Banded and Foilated
Crinkled or Wavy
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
4 Types
4.1 Types
Borolanite and Litchfieldite
Not Available
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-61-2
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Greasy to Dull
Phyllitic
6.1.7 Compressive Strength
150.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Poor
Crenulation and Pervasive
6.1.9 Toughness
Not Available
1.2
6.1.10 Specific Gravity
2.62.72-2.73
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm32.18-3.3 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
7.1.3 Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Brazil, Colombia, Guyana
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New South Wales, New Zealand, Queensland

Nepheline Syenite vs Phyllite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Nepheline Syenite and Phyllite Reserves. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Nepheline Syenite vs Phyllite information and Nepheline Syenite vs Phyllite characteristics in the upcoming sections.

Nepheline Syenite vs Phyllite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Nepheline Syenite vs Phyllite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Nepheline Syenite and Properties of Phyllite. Learn more about Nepheline Syenite vs Phyllite in the next section. The interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Nepheline Syenite and Phyllite, they have various applications in construction industry. The uses of Nepheline Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Phyllite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone.

More about Nepheline Syenite and Phyllite

Here you can know more about Nepheline Syenite and Phyllite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Nepheline Syenite and Phyllite consists of mineral content and compound content. The mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Nepheline Syenite vs Phyllite, the texture, color and appearance plays an important role in determining the type of rock. Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Phyllite is available in black to grey, light greenish grey colors. Appearance of Nepheline Syenite is Banded and Foilated and that of Phyllite is Crinkled or Wavy. Properties of rock is another aspect for Nepheline Syenite vs Phyllite. The hardness of Nepheline Syenite is 5.5-6 and that of Phyllite is 1-2. The types of Nepheline Syenite are Borolanite and Litchfieldite whereas types of Phyllite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Nepheline Syenite and Phyllite is white. The specific heat capacity of Nepheline Syenite is Not Available and that of Phyllite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Nepheline Syenite is heat resistant, impact resistant, wear resistant whereas Phyllite is heat resistant, pressure resistant, water resistant.