Home
×

Litchfieldite
Litchfieldite

Anthracite
Anthracite



ADD
Compare
X
Litchfieldite
X
Anthracite

Litchfieldite and Anthracite

1 Definition
1.1 Definition
Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
1.2 History
1.2.1 Origin
USA
Pennsylvania, U.S.
1.2.2 Discoverer
Bayley
Unknown
1.3 Etymology
From its occurrence at Litchfield, Maine, USA
From Greek anthrakites, from anthrax, anthrak meaning coal
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Amorphous, Glassy
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
3.2.2 Medical Industry
Not Yet Used
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
4 Types
4.1 Types
Borolanite and Litchfieldite
Semi-anthracite and Meta-anthracite
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Litchfieldite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Calcite, Clay, Clay Minerals
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Water Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
1-1.5
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Greasy to Dull
Shiny
6.1.7 Compressive Strength
What Is Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6
1.1-1.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm3
1.25-2.5 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
1.32 kJ/Kg K
Rank: 4 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
South Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Finland, Norway, Portugal
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, Mexico, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, Victoria

All about Litchfieldite and Anthracite Properties

Know all about Litchfieldite and Anthracite properties here. All properties of rocks are important as they define the type of rock and its application. Litchfieldite belongs to Igneous Rocks while Anthracite belongs to Metamorphic Rocks.Texture of Litchfieldite is Granular whereas that of Anthracite is Amorphous, Glassy. Litchfieldite appears Banded and Foilated and Anthracite appears Veined or Pebbled. The luster of Litchfieldite is greasy to dull while that of Anthracite is shiny. Litchfieldite is available in brown, buff, cream, green, grey, pink, white colors whereas Anthracite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Litchfieldite are creating artwork and that of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry.