×

Lherzolite
Lherzolite

Kenyte
Kenyte



ADD
Compare
X
Lherzolite
X
Kenyte

Lherzolite vs Kenyte

Add ⊕
1 Definition
1.1 Definition
Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix
1.2 History
1.2.1 Origin
France
Mount Kenya
1.2.2 Discoverer
Unknown
J. W. Gregory
1.3 Etymology
From the Lherz Massif, an alpine peridotite complex, at Étang de Lers, near Massat in the French Pyrenees; Lherz is the archaic spelling of this location
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Grenue
Glassy, Granular
2.2 Color
Black, Dark Greenish - Grey, Green, Pink, Purple
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Glassy, Vesicular and Foilated
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Landscaping, Manufacture of Magnesium and Dolomite Refractories, Used for flooring, stair treads, borders and window sills.
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
As armour rock for sea walls, Source of Magnesia (MgO), Used in aquariums
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Garnet Lherzolite
Not Available
4.2 Features
Host Rock for Lead
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Lherzolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Harzburgite, Olivine, Pyroxene, Pyrrhotite
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
CaO, Cr, Chromium(III) Oxide, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.55.5-6
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal to Uneven
6.1.4 Streak
White
White, Greenish White or Grey
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Greasy to Dull
6.1.7 Compressive Strength
290.00 N/mm2150.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Poor
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.862.6
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.8-2.9 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.95 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia, South Korea
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
7.1.2 Africa
Western Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
United Kingdom
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Not Yet Found
Brazil, Chile, Colombia, Uruguay, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia

Lherzolite vs Kenyte Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lherzolite and Kenyte Reserves. Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lherzolite vs Kenyte information and Lherzolite vs Kenyte characteristics in the upcoming sections.

Lherzolite vs Kenyte Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lherzolite vs Kenyte characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lherzolite and Properties of Kenyte. Learn more about Lherzolite vs Kenyte in the next section. The interior uses of Lherzolite include Decorative aggregates, Entryways, Homes and Interior decoration whereas the interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Lherzolite and Kenyte, they have various applications in construction industry. The uses of Lherzolite in construction industry include Landscaping, Manufacture of magnesium and dolomite refractories, Used for flooring, stair treads, borders and window sills. and that of Kenyte include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Lherzolite and Kenyte

Here you can know more about Lherzolite and Kenyte. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lherzolite and Kenyte consists of mineral content and compound content. The mineral content of Lherzolite includes Harzburgite, Olivine, Pyroxene, Pyrrhotite and mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all . When we have to compare Lherzolite vs Kenyte, the texture, color and appearance plays an important role in determining the type of rock. Lherzolite is available in black, dark greenish - grey, green, pink, purple colors whereas, Kenyte is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Lherzolite is Glassy, Vesicular and Foilated and that of Kenyte is Banded and Foilated. Properties of rock is another aspect for Lherzolite vs Kenyte. The hardness of Lherzolite is 6.5 and that of Kenyte is 5.5-6. The types of Lherzolite are Garnet Lherzolite whereas types of Kenyte are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lherzolite is white while that of Kenyte is white, greenish white or grey. The specific heat capacity of Lherzolite is 0.95 kJ/Kg K and that of Kenyte is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lherzolite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Kenyte is heat resistant, impact resistant, wear resistant.