×

Latite
Latite

Granite
Granite



ADD
Compare
X
Latite
X
Granite

Latite vs Granite

Add ⊕
1 Definition
1.1 Definition
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
Granite is a very hard, granular, crystalline igneous rock which consists mainly of quartz, mica, and feldspar and is often used as building stone
1.2 History
1.2.1 Origin
Italy
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Latin word latium
From Italian granito, which means grained rock, from grano grain, and from Latin granum
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Granular, Phaneritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Bridges, Paving Stone, Garden Decoration, Near Swimming Pools, Office Buildings, Resorts
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Curling, Gemstone, Laboratory bench tops, Tombstones, Used in aquariums
4 Types
4.1 Types
Rhomb porphyries
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite, Hybrid Granite, Granodiorite and Alkali Feldspar Granite
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Agia Sophia in Istanbul, Turkey, Blue Domed Church in Santorini, Greece, Blue Mosque in Istanbul, Charminar in Hyderabad, India, Diana, Princess of Wales Memorial Fountain in London, UK, Ephesus in Turkey, Georgia Guidestones in Georgia, US, Hermitage in Saint Petersburg, Khajuraho Temples, India, Mahabalipuram in Tamil Nadu, India, Mysore Palace in Karnataka, India, Signers Monument in Augusta, Georgia, Statue of Liberty in New York, USA, Taj Mahal in Agra, India, Tower Bridge in London, Vietnam Veterans Memorial in Washington, US, Washington Monument, US
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Avukana Buddha Statue in Sri Lanka, Lincoln Memorial in America, Mount Rushmore National Memorial in South Dakota, US, The Colossal Red Granite Statue of Amenhotep III in Karnak, Egypt
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Granite is an intrusive igneous rock which is very hard, crystalline and is visibly homogeneous in texture and forms by melting of continental rocks
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
CaO, Cl, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.56-7
Coal
1 7
6.1.2 Grain Size
Fine Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
310.00 N/mm2175.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.862.6-2.7
Marble
0 8.4
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm32.65-2.75 g/cm3
Lignite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg K0.79 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Not Yet Found
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Not Yet Found

Latite vs Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Latite and Granite Reserves. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. Granite is a very hard, granular, crystalline igneous rock which consists mainly of quartz, mica, and feldspar and is often used as building stone. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Latite vs Granite information and Latite vs Granite characteristics in the upcoming sections.

Latite vs Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Latite vs Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Latite and Properties of Granite. Learn more about Latite vs Granite in the next section. The interior uses of Latite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Granite include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Latite and Granite, they have various applications in construction industry. The uses of Latite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Granite include As dimension stone.

More about Latite and Granite

Here you can know more about Latite and Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Latite and Granite consists of mineral content and compound content. The mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene and mineral content of Granite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Latite vs Granite, the texture, color and appearance plays an important role in determining the type of rock. Latite is available in black, brown, colourless, green, grey, pink, white colors whereas, Granite is available in black, grey, orange, pink, white colors. Appearance of Latite is Rough and that of Granite is Veined or Pebbled. Properties of rock is another aspect for Latite vs Granite. The hardness of Latite is 5-5.5 and that of Granite is 6-7. The types of Latite are Rhomb porphyries whereas types of Granite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite, Hybrid Granite, Granodiorite and Alkali Feldspar Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Latite and Granite is white. The specific heat capacity of Latite is 0.92 kJ/Kg K and that of Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Latite is heat resistant, pressure resistant whereas Granite is heat resistant, wear resistant.