Home
×

Latite
Latite

Breccia
Breccia



ADD
Compare
X
Latite
X
Breccia

Latite vs Breccia

Add ⊕
1 Definition
1.1 Definition
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material
1.2 History
1.2.1 Origin
Italy
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Latin word latium
From Italian, literally gravel, Germanic origin and related to break
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Brecciated, Clastic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Beige, Black, Blue, Brown, Buff, Green, Grey, Orange, Pink, Purple, Red, Rust, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Rough
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Construction Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Rhomb porphyries
Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, Clasts are smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Breccia is a clastic sedimentary rock which is composed of broken fragments of minerals or rock which are cemented together by a fine-grained matrix and it forms where broken, angular fragments of rock or mineral debris accumulate.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Calcite, Clay, Feldspar, Phosphates, Quartz, Silica
5.2.2 Compound Content
CaO, Cl, MgO
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, Potassium Oxide, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
7
6.1.2 Grain Size
Fine Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Pearly
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.86
2.86-2.87
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
0 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Kazakhstan, Mongolia, Russia, South Korea, Uzbekistan
7.1.2 Africa
Not Yet Found
Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Barbados, Canada, Mexico, Panama, USA
7.2.2 South America
Not Yet Found
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand

Latite vs Breccia Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Latite and Breccia Reserves. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Latite vs Breccia information and Latite vs Breccia characteristics in the upcoming sections.

Latite vs Breccia Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Latite vs Breccia characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Latite and Properties of Breccia. Learn more about Latite vs Breccia in the next section. The interior uses of Latite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Breccia include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Latite and Breccia, they have various applications in construction industry. The uses of Latite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Breccia include As dimension stone, Construction aggregate, Landscaping, Roadstone.

More about Latite and Breccia

Here you can know more about Latite and Breccia. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Latite and Breccia consists of mineral content and compound content. The mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene and mineral content of Breccia includes Calcite, Clay, Feldspar, Phosphates, Quartz, Silica. You can also check out the list of all Igneous Rocks. When we have to compare Latite vs Breccia, the texture, color and appearance plays an important role in determining the type of rock. Latite is available in black, brown, colourless, green, grey, pink, white colors whereas, Breccia is available in beige, black, blue, brown, buff, green, grey, orange, pink, purple, red, rust, white, yellow colors. Appearance of Latite is Rough and that of Breccia is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Latite vs Breccia. The hardness of Latite is 5-5.5 and that of Breccia is 7. The types of Latite are Rhomb porphyries whereas types of Breccia are Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Latite and Breccia is white. The specific heat capacity of Latite is 0.92 kJ/Kg K and that of Breccia is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Latite is heat resistant, pressure resistant whereas Breccia is heat resistant, impact resistant, pressure resistant, wear resistant.