Home
×

Latite
Latite

Pyroxenite
Pyroxenite



ADD
Compare
X
Latite
X
Pyroxenite

Latite and Pyroxenite

Add ⊕
1 Definition
1.1 Definition
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine
1.2 History
1.2.1 Origin
Italy
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Latin word latium
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Clastic, Granular, Phaneritic, Porphyritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Countertops, Decorative Aggregates, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
4 Types
4.1 Types
Rhomb porphyries
Clinopyroxenites, Orthopyroxenites and Websterites
4.2 Features
Host Rock for Lead
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene
5.2.2 Compound Content
CaO, Cl, MgO
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
7
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White, Greenish White or Grey
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
What Is Flint
310.00 N/mm2
Rank: 2 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Irregular
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.86
3.2-3.5
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
3.1-3.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
India, Russia
7.1.2 Africa
Not Yet Found
South Africa
7.1.3 Europe
Bulgaria
Germany, Greece, Italy, Scotland, Turkey
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Not Yet Found
Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland

All about Latite and Pyroxenite Properties

Know all about Latite and Pyroxenite properties here. All properties of rocks are important as they define the type of rock and its application. Latite and Pyroxenite belong to Igneous Rocks.Texture of Latite is Aphanitic to Porphyritic whereas that of Pyroxenite is Clastic, Granular, Phaneritic, Porphyritic. Latite appears Rough and Pyroxenite appears Layered, Banded, Veined and Shiny. The luster of Latite is subvitreous to dull while that of Pyroxenite is dull to vitreous to submetallic. Latite is available in black, brown, colourless, green, grey, pink, white colors whereas Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors. The commercial uses of Latite are an oil and gas reservoir, as a feed additive for livestock, metallurgical flux, soil conditioner, source of magnesia (mgo) and that of Pyroxenite are cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones.