Definition
Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas
  
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.
  
History
  
  
Origin
India
  
Kimberley, South Africa
  
Discoverer
Francis Buchanan-Hamilton
  
Unknown
  
Etymology
From Latin later brick, tile + -ite1
  
From Kimberley + -ite, from the name of the South African town of Kimberley where the rock was first found.
  
Class
Sedimentary Rocks
  
Igneous Rocks
  
Sub-Class
Durable Rock, Soft Rock
  
Durable Rock, Hard Rock
  
Family
  
  
Group
Not Applicable
  
Volcanic
  
Other Categories
Fine Grained Rock, Opaque Rock
  
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
  
Texture
Earthy, Massive, Porphyritic
  
Porphyritic
  
Color
Brown, Buff, Red
  
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
  
Maintenance
Less
  
Less
  
Durability
Durable
  
Durable
  
Water Resistant
No
  
Yes
  
Scratch Resistant
No
  
Yes
  
Stain Resistant
No
  
Yes
  
Wind Resistant
No
  
Yes
  
Acid Resistant
No
  
Yes
  
Appearance
Rough and Banded
  
Dull and Banded
  
Architecture
  
  
Interior Uses
Decorative Aggregates, Flooring, Interior Decoration
  
Countertops, Decorative Aggregates, Homes, Interior Decoration
  
Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
  
As Building Stone, Paving Stone, Garden Decoration
  
Other Architectural Uses
Curbing
  
Curbing
  
Industry
  
  
Construction Industry
Cobblestones, for Road Aggregate, Landscaping, Roadstone
  
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
  
Medical Industry
Not Yet Used
  
Taken as a Supplement for Calcium or Magnesium
  
Antiquity Uses
Artifacts, Monuments, Sculpture
  
Artifacts, Monuments, Sculpture, Small Figurines
  
Other Uses
  
  
Commercial Uses
An Oil and Gas Reservoir, Source of bauxite, Used in aquariums
  
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
  
Types
Not Available
  
Basaltic Kimberlites and Micaceous Kimberlites
  
Features
Is one of the oldest rock, Very fine grained rock
  
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
  
Archaeological Significance
  
  
Monuments
Used
  
Used
  
Famous Monuments
Data Not Available
  
Data Not Available
  
Sculpture
Used
  
Used
  
Famous Sculptures
Data Not Available
  
Data Not Available
  
Pictographs
Used
  
Not Used
  
Petroglyphs
Used
  
Not Used
  
Figurines
Used
  
Used
  
Fossils
Present
  
Absent
  
Formation
Laterite is a type of sedimentary rock which is generally a reddish weathering product of basalt.
  
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.
  
Composition
  
  
Mineral Content
Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene
  
Garnet, Olivine, Phlogopite, Pyroxene
  
Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
  
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
  
Transformation
  
  
Metamorphism
No
  
Yes
  
Types of Metamorphism
Not Applicable
  
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
  
Weathering
Yes
  
Yes
  
Types of Weathering
Biological Weathering, Chemical Weathering
  
Biological Weathering, Chemical Weathering, Mechanical Weathering
  
Erosion
Yes
  
Yes
  
Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
  
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
  
Physical Properties
  
  
Hardness
2
  
6-7
  
Grain Size
Fine Grained
  
Fine to Coarse Grained
  
Fracture
Conchoidal
  
Conchoidal
  
Streak
White
  
White
  
Porosity
Highly Porous
  
Very Less Porous
  
Luster
Dull
  
Subvitreous to Dull
  
Cleavage
Not Applicable
  
Conchoidal
  
Toughness
Not Available
  
Not Available
  
Specific Gravity
Not Available
  
2.86-2.87
  
Transparency
Opaque
  
Translucent to Opaque
  
Density
Not Available
  
2.95-2.96 g/cm3
  
Thermal Properties
  
  
Specific Heat Capacity
Not Available
  
0.92 kJ/Kg K
  
10
Resistance
Heat Resistant, Pressure Resistant
  
Heat Resistant, Impact Resistant
  
Deposits in Eastern Continents
  
  
Asia
India
  
Russia
  
Africa
East Africa, Western Africa
  
Angola, Botswana, Cameroon, Ethiopia, South Africa
  
Europe
England, Romania, Scotland
  
England, Hungary, Iceland, United Kingdom
  
Others
Not Yet Found
  
Antarctica
  
Deposits in Western Continents
  
  
North America
Canada, USA
  
Canada, USA
  
South America
Not Yet Found
  
Argentina, Colombia, Ecuador
  
Deposits in Oceania Continent
  
  
Australia
Central Australia, Western Australia
  
New South Wales, New Zealand, South Australia, Western Australia
  
Laterite vs Kimberlite Characteristics
Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Laterite vs Kimberlite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Laterite and Properties of Kimberlite. Learn more about Laterite vs Kimberlite in the next section. The interior uses of Laterite include Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Kimberlite include Countertops, Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Laterite and Kimberlite, they have various applications in construction industry. The uses of Laterite in construction industry include Cobblestones, For road aggregate, Landscaping, Roadstone and that of Kimberlite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.
More about Laterite and Kimberlite
Here you can know more about Laterite and Kimberlite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Laterite and Kimberlite consists of mineral content and compound content. The mineral content of Laterite includes Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene and mineral content of Kimberlite includes Garnet, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Laterite vs Kimberlite, the texture, color and appearance plays an important role in determining the type of rock. Laterite is available in brown, buff, red colors whereas, Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Laterite is Rough and Banded and that of Kimberlite is Dull and Banded. Properties of rock is another aspect for Laterite vs Kimberlite. The hardness of Laterite is 2 and that of Kimberlite is 6-7. The types of Laterite are Not Available whereas types of Kimberlite are Basaltic Kimberlites and Micaceous Kimberlites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Laterite and Kimberlite is white. The specific heat capacity of Laterite is Not Available and that of Kimberlite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Laterite is heat resistant, pressure resistant whereas Kimberlite is heat resistant, impact resistant.