×

Kenyte
Kenyte

Quartzite
Quartzite



ADD
Compare
X
Kenyte
X
Quartzite

Kenyte vs Quartzite

Add ⊕
1 Definition
1.1 Definition
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix
Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone
1.2 History
1.2.1 Origin
Mount Kenya
Unknown
1.2.2 Discoverer
J. W. Gregory
Unknown
1.3 Etymology
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900
From quartz + -ite
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Granular
Foliated, Granular
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Blue, Brown, Green, Light Grey, Purple, White, Yellow
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Banded and Foilated
Lustrous
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens
Countertops, Decorative Aggregates, Flooring, Homes
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
Arrowheads, As Dimension Stone, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Jewellery, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, As armour rock for sea walls, Cemetery Markers, Commemorative Tablets, In aquifers, Laboratory bench tops, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones, Used in aquariums
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Quartzite forms from sandstone and the mineral quartz being put under extreme heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-66-7
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium Grained
6.1.3 Fracture
Conchoidal to Uneven
Uneven, Splintery or Conchoidal
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Greasy to Dull
Vitreous
6.1.7 Compressive Strength
150.00 N/mm2115.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Poor
Indiscernible
6.1.9 Toughness
Not Available
1.9
6.1.10 Specific Gravity
2.62.6-2.8
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Transparent to Translucent
6.1.12 Density
2.6 g/cm32.32-2.42 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.75 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
China, India, Israel, Russia, South Korea, Thailand, Turkey
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Ethiopia, Morocco, South Africa, Zimbabwe
7.1.3 Europe
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
England, Italy, Norway, Scotland, Sweden, United Kingdom
7.1.4 Others
Greenland
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Bahamas, Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New Zealand, Queensland, Western Australia

Kenyte vs Quartzite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Kenyte and Quartzite Reserves. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Kenyte vs Quartzite information and Kenyte vs Quartzite characteristics in the upcoming sections.

Kenyte vs Quartzite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Kenyte vs Quartzite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Kenyte and Properties of Quartzite. Learn more about Kenyte vs Quartzite in the next section. The interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens whereas the interior uses of Quartzite include Countertops, Decorative aggregates, Flooring and Homes. Due to some exceptional properties of Kenyte and Quartzite, they have various applications in construction industry. The uses of Kenyte in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Quartzite include Arrowheads, As dimension stone, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone.

More about Kenyte and Quartzite

Here you can know more about Kenyte and Quartzite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Kenyte and Quartzite consists of mineral content and compound content. The mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Quartzite includes Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Kenyte vs Quartzite, the texture, color and appearance plays an important role in determining the type of rock. Kenyte is available in brown, buff, cream, green, grey, pink, white colors whereas, Quartzite is available in black, blue, brown, green, light grey, purple, white, yellow colors. Appearance of Kenyte is Banded and Foilated and that of Quartzite is Lustrous. Properties of rock is another aspect for Kenyte vs Quartzite. The hardness of Kenyte is 5.5-6 and that of Quartzite is 6-7. The types of Kenyte are Not Available whereas types of Quartzite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Kenyte and Quartzite is white, greenish white or grey. The specific heat capacity of Kenyte is Not Available and that of Quartzite is 0.75 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Kenyte is heat resistant, impact resistant, wear resistant whereas Quartzite is heat resistant, impact resistant, pressure resistant, wear resistant.