Home
×

Jasperoid
Jasperoid

Mylonite
Mylonite



ADD
Compare
X
Jasperoid
X
Mylonite

Jasperoid vs Mylonite

1 Definition
1.1 Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
Mylonite is a metamorphic rock formed by ductile deformation during intense shearing encountered during folding and faulting, a process termed cataclastic or dynamic metamorphism
1.2 History
1.2.1 Origin
USA
New Zealand
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From silica, the main mineral content of Jasperoid
From Greek mulōn mill + -ite
1.4 Class
Sedimentary Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Foliated
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black to Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
for Road Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Not Available
Blastomylonites, Ultramylonites and Phyllonites
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
Mylonites are ductilely deformed rocks formed by the accumulation of large shear strain, in ductile fault zones.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Porphyroblasts
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, Calcium Sulfate, Chromium(III) Oxide, Iron(III) Oxide, Magnesium Carbonate, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
3-4
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous and Pearly
Shiny
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
1.28 N/mm2
Rank: 32 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Conchoidal
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.8-3
2.97-3.05
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.6-4.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
1.50 kJ/Kg K
Rank: 3 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
China, India, Indonesia, Saudi Arabia, South Korea
7.1.2 Africa
Morocco, Namibia
Eritrea, Ethiopia, Ghana, South Africa, Western Africa
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
England, Finland, France, Germany, Great Britain, Greece, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
USA
7.2.2 South America
Brazil, Colombia
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
Central Australia, Western Australia

Jasperoid vs Mylonite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Jasperoid and Mylonite Reserves. Jasperoid is a rare, peculiar type of metasomatic alteration of rocks. Mylonite is a metamorphic rock formed by ductile deformation during intense shearing encountered during folding and faulting, a process termed cataclastic or dynamic metamorphism. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Jasperoid vs Mylonite information and Jasperoid vs Mylonite characteristics in the upcoming sections.

Jasperoid vs Mylonite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Jasperoid vs Mylonite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Jasperoid and Properties of Mylonite. Learn more about Jasperoid vs Mylonite in the next section. The interior uses of Jasperoid include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Mylonite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Jasperoid and Mylonite, they have various applications in construction industry. The uses of Jasperoid in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Mylonite include For road aggregate, Landscaping, Roadstone.

More about Jasperoid and Mylonite

Here you can know more about Jasperoid and Mylonite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Jasperoid and Mylonite consists of mineral content and compound content. The mineral content of Jasperoid includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Mylonite includes Porphyroblasts. You can also check out the list of all Sedimentary Rocks. When we have to compare Jasperoid vs Mylonite, the texture, color and appearance plays an important role in determining the type of rock. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas, Mylonite is available in black to grey colors. Appearance of Jasperoid is Glassy or Pearly and that of Mylonite is Dull, Banded and Foilated. Properties of rock is another aspect for Jasperoid vs Mylonite. The hardness of Jasperoid is 3.5-4 and that of Mylonite is 3-4. The types of Jasperoid are Not Available whereas types of Mylonite are Blastomylonites, Ultramylonites and Phyllonites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Jasperoid and Mylonite is white. The specific heat capacity of Jasperoid is 0.92 kJ/Kg K and that of Mylonite is 1.50 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Jasperoid is heat resistant, pressure resistant, wear resistant whereas Mylonite is heat resistant, impact resistant, pressure resistant.