Home
×

Jasperoid
Jasperoid

Ignimbrite
Ignimbrite



ADD
Compare
X
Jasperoid
X
Ignimbrite

Jasperoid and Ignimbrite

1 Definition
1.1 Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows
1.2 History
1.2.1 Origin
USA
New Zealand
1.2.2 Discoverer
Unknown
Patrick Marshall
1.3 Etymology
From silica, the main mineral content of Jasperoid
From Latin ignis fire + imber, imbr- shower of rain, storm cloud + -ite
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Aphanitic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Beige, Black, Brown, Grey, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
Ignimbrites are formed from very poorly sorted mixture of volcanic ash or tuff and pumice lapilli, commonly with scattered lithic fragments.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Ca, NaCl
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
4-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous and Pearly
Vitreous to Dull
6.1.7 Compressive Strength
What Is Flint
140.00 N/mm2
Rank: 15 (Overall)
243.80 N/mm2
Rank: 5 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.8-3
2.73
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
1-1.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.20 kJ/Kg K
Rank: 25 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Morocco, Namibia
Cameroon, Cape Verde, Chad, Djibouti, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Tanzania, Uganda
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, Costa Rica, Panama, USA
7.2.2 South America
Brazil, Colombia
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
Central Australia, Western Australia

All about Jasperoid and Ignimbrite Properties

Know all about Jasperoid and Ignimbrite properties here. All properties of rocks are important as they define the type of rock and its application. Jasperoid belongs to Sedimentary Rocks while Ignimbrite belongs to Igneous Rocks.Texture of Jasperoid is Earthy whereas that of Ignimbrite is Aphanitic. Jasperoid appears Glassy or Pearly and Ignimbrite appears Dull, Vesicular and Foilated. The luster of Jasperoid is vitreous and pearly while that of Ignimbrite is vitreous to dull. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas Ignimbrite is available in beige, black, brown, grey, pink, white colors. The commercial uses of Jasperoid are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo) and that of Ignimbrite are cemetery markers, commemorative tablets, creating artwork.