Home
×

Gneiss
Gneiss

Rhyolite
Rhyolite



ADD
Compare
X
Gneiss
X
Rhyolite

Gneiss vs Rhyolite

Add ⊕
1 Definition
1.1 Definition
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
Rhyolite is a fine-grained igneous rock which is rich in silica
1.2 History
1.2.1 Origin
Unknown
North America
1.2.2 Discoverer
Unknown
Ferdinand von Richthofen
1.3 Etymology
From the Middle High German verb gneist (to spark; so called because the rock glitters)
From German Rhyolit, from Greek rhuax lava stream + lithos stone
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Platy
Aphanitic, Glassy, Porphyritic
2.2 Color
Black, Brown, Pink, Red, White
Grey, White, Light Black
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Foliated
Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Homes, Hotels, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
Arrowheads, As Dimension Stone, Building houses or walls, Construction Aggregate, Cutting Tool, for Road Aggregate, Knives
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
Gemstone, Laboratory bench tops, Jewelry
4 Types
4.1 Types
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
Pumice Rocks, Obsidian Rocks, Perlite Rocks, Porphyritic Rocks.
4.2 Features
Generally rough to touch, Is one of the oldest rock
Acidic in nature, Available in lots of colors
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Konark Sun Temple in India, Washington Monument, US
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
Rhyolite is a felsic extrusive rock and due to its high silica content, rhyolite lava is very viscous and is volcanic equivalent of granite.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
Biotite, Feldspar, Hornblade, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide, Sodium
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
Chemical Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
6-7
6.1.2 Grain Size
Medium to Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Irregular
Sub-conchoidal
6.1.4 Streak
White
Colorless
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Dull
Earthy
6.1.7 Compressive Strength
Flint
125.00 N/mm2
Rank: 17 (Overall)
140.00 N/mm2
Rank: 15 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Not Available
6.1.9 Toughness
1.2
2
6.1.10 Specific Gravity
2.5-2.7
2.65-2.67
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6-2.9 g/cm3
2.4-2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
China, India
7.1.2 Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
Germany, Iceland, Ireland, Italy, Spain
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria
New Zealand, Queensland, Western Australia

Gneiss vs Rhyolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Gneiss and Rhyolite Reserves. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. Rhyolite is a fine-grained igneous rock which is rich in silica. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Gneiss vs Rhyolite information and Gneiss vs Rhyolite characteristics in the upcoming sections.

Gneiss vs Rhyolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Gneiss vs Rhyolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Gneiss and Properties of Rhyolite. Learn more about Gneiss vs Rhyolite in the next section. The interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Rhyolite include Decorative aggregates, Homes, Hotels, Interior decoration and Kitchens. Due to some exceptional properties of Gneiss and Rhyolite, they have various applications in construction industry. The uses of Gneiss in construction industry include As dimension stone and that of Rhyolite include Arrowheads, As dimension stone, Building houses or walls, Construction aggregate, Cutting tool, For road aggregate, Knives.

More about Gneiss and Rhyolite

Here you can know more about Gneiss and Rhyolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Gneiss and Rhyolite consists of mineral content and compound content. The mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon and mineral content of Rhyolite includes Biotite, Feldspar, Hornblade, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Gneiss vs Rhyolite, the texture, color and appearance plays an important role in determining the type of rock. Gneiss is available in black, brown, pink, red, white colors whereas, Rhyolite is available in grey, white, light black colors. Appearance of Gneiss is Foliated and that of Rhyolite is Banded. Properties of rock is another aspect for Gneiss vs Rhyolite. The hardness of Gneiss is 7 and that of Rhyolite is 6-7. The types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss. whereas types of Rhyolite are Pumice Rocks, Obsidian Rocks, Perlite Rocks, Porphyritic Rocks.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Gneiss is white while that of Rhyolite is colorless. The specific heat capacity of Gneiss is Not Available and that of Rhyolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant whereas Rhyolite is heat resistant, wear resistant.