×

Gneiss
Gneiss

Luxullianite
Luxullianite



ADD
Compare
X
Gneiss
X
Luxullianite

Gneiss and Luxullianite

1 Definition
1.1 Definition
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
Luxullianite is a rare type of granite, known for presence of clusters of radially arranged acicular tourmaline crystals which are enclosed by phenocrysts of orthoclase and quartz in a matrix of quartz, tourmaline, alkali feldspar, brown mica.
1.2 History
1.2.1 Origin
Unknown
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Middle High German verb gneist (to spark; so called because the rock glitters)
From the village of Luxulyan in Cornwall, England, where this variety of granite is found
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Platy
Granular, Phaneritic
2.2 Color
Black, Brown, Pink, Red, White
Black, Grey, Orange, Pink, White
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Foliated
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
Creating Artwork, Curling, Gemstone, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Konark Sun Temple in India, Washington Monument, US
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
Luxullianite is an intrusive igneous rock which is very hard, crystalline and is visibly homogeneous in texture. It is found in large plutons on the continents, i.e. in areas where the Earth's crust has been deeply eroded.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
76-7
Coal
1 7
6.1.2 Grain Size
Medium to Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Irregular
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Dull
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
125.00 N/mm2175.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Poor
Not Available
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.5-2.72.6-2.7
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6-2.9 g/cm32.6-2.8 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.79 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria
Not Yet Found

All about Gneiss and Luxullianite Properties

Know all about Gneiss and Luxullianite properties here. All properties of rocks are important as they define the type of rock and its application. Gneiss belongs to Metamorphic Rocks while Luxullianite belongs to Igneous Rocks.Texture of Gneiss is Banded, Foliated, Platy whereas that of Luxullianite is Granular, Phaneritic. Gneiss appears Foliated and Luxullianite appears Veined or Pebbled. The luster of Gneiss is dull while that of Luxullianite is dull to grainy with sporadic parts pearly and vitreous. Gneiss is available in black, brown, pink, red, white colors whereas Luxullianite is available in black, grey, orange, pink, white colors. The commercial uses of Gneiss are cemetery markers, jewelry, tombstones, used in aquariums and that of Luxullianite are creating artwork, curling, gemstone, laboratory bench tops, tombstones.