Home
×

Ganister
Ganister

Lamprophyre
Lamprophyre



ADD
Compare
X
Ganister
X
Lamprophyre

Ganister vs Lamprophyre

1 Definition
1.1 Definition
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
1.2 History
1.2.1 Origin
England
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
From Greek lampros bright and shining + porphureos purple
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Granular, Rough
Porphyritic
2.2 Color
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
4.2 Features
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
5-6
6.1.2 Grain Size
Coarse or Fine
Fine to Coarse Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
95.00 N/mm2
Rank: 20 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Conchoidal
6.1.9 Toughness
2.6
Not Available
6.1.10 Specific Gravity
2.2-2.8
2.86-2.87
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.2-2.8 g/cm3
2.95-2.96 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
Russia
7.1.2 Africa
Namibia, Nigeria, South Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Greenland
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Ganister vs Lamprophyre Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Ganister and Lamprophyre Reserves. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Ganister vs Lamprophyre information and Ganister vs Lamprophyre characteristics in the upcoming sections.

Ganister vs Lamprophyre Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Ganister vs Lamprophyre characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Ganister and Properties of Lamprophyre. Learn more about Ganister vs Lamprophyre in the next section. The interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Lamprophyre include Decorative aggregates and Interior decoration. Due to some exceptional properties of Ganister and Lamprophyre, they have various applications in construction industry. The uses of Ganister in construction industry include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar and that of Lamprophyre include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Ganister and Lamprophyre

Here you can know more about Ganister and Lamprophyre. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Ganister and Lamprophyre consists of mineral content and compound content. The mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz and mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Ganister vs Lamprophyre, the texture, color and appearance plays an important role in determining the type of rock. Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors whereas, Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Ganister is Rough and that of Lamprophyre is Dull, Banded and Foilated. Properties of rock is another aspect for Ganister vs Lamprophyre. The hardness of Ganister is 6-7 and that of Lamprophyre is 5-6. The types of Ganister are Not Available whereas types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Ganister and Lamprophyre is white. The specific heat capacity of Ganister is 0.92 kJ/Kg K and that of Lamprophyre is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Ganister is heat resistant, impact resistant, pressure resistant whereas Lamprophyre is heat resistant, impact resistant.