Home
×

Ganister
Ganister

Andesite
Andesite



ADD
Compare
X
Ganister
X
Andesite

Ganister vs Andesite

Add ⊕
1 Definition
1.1 Definition
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
Andesite is a dark, fine-grained, brown or greyish intermediate volcanic rock which is a commonly found in lava
1.2 History
1.2.1 Origin
England
North America
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
From Andes mountains, where it is found in abundance
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Granular, Rough
Aphanitic to Porphyritic
2.2 Color
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
Bluish - Grey, Grey, Pink, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
Office Buildings, Roof Tiles
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Icelandite
4.2 Features
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
Generally rough to touch, High silica content, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Middle of the Earth in Ecuador
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
Andesite is a fine-grained igneous rock that forms when the magma is erupted onto the surface and is crystallized quickly.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
7
6.1.2 Grain Size
Coarse or Fine
Very fine-grained
6.1.3 Fracture
Splintery
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Dull
Vitreous
6.1.7 Compressive Strength
Flint
95.00 N/mm2
Rank: 20 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
2.6
1.1
6.1.10 Specific Gravity
2.2-2.8
2.5-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.2-2.8 g/cm3
2.11-2.36 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
2.39 kJ/Kg K
Rank: 2 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
India, Indonesia, Japan, Nepal, South Korea
7.1.2 Africa
Namibia, Nigeria, South Africa
Egypt, Ethiopia, Morocco, Namibia, South Africa, Tanzania
7.1.3 Europe
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
Austria, Finland, Germany, Italy, Romania, Turkey, United Kingdom
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Mexico, USA
7.2.2 South America
Brazil
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand
New South Wales, New Zealand, Western Australia

Ganister vs Andesite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Ganister and Andesite Reserves. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. Andesite is a dark, fine-grained, brown or greyish intermediate volcanic rock which is a commonly found in lava. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Ganister vs Andesite information and Ganister vs Andesite characteristics in the upcoming sections.

Ganister vs Andesite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Ganister vs Andesite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Ganister and Properties of Andesite. Learn more about Ganister vs Andesite in the next section. The interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Andesite include Decorative aggregates, Floor tiles, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Ganister and Andesite, they have various applications in construction industry. The uses of Ganister in construction industry include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar and that of Andesite include Cobblestones, Construction aggregate, For road aggregate.

More about Ganister and Andesite

Here you can know more about Ganister and Andesite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Ganister and Andesite consists of mineral content and compound content. The mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz and mineral content of Andesite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Zircon. You can also check out the list of all Sedimentary Rocks. When we have to compare Ganister vs Andesite, the texture, color and appearance plays an important role in determining the type of rock. Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors whereas, Andesite is available in bluish - grey, grey, pink, yellow colors. Appearance of Ganister is Rough and that of Andesite is Dull and Soft. Properties of rock is another aspect for Ganister vs Andesite. The hardness of Ganister is 6-7 and that of Andesite is 7. The types of Ganister are Not Available whereas types of Andesite are Icelandite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Ganister and Andesite is white. The specific heat capacity of Ganister is 0.92 kJ/Kg K and that of Andesite is 2.39 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Ganister is heat resistant, impact resistant, pressure resistant whereas Andesite is heat resistant, pressure resistant, wear resistant.