Formation
Hawaiite is a fine-grained, hard rock that forms when bits of lava shoot out of volcanoes and reach the Earth's surface.
  
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Skarn is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
  
Composition
  
  
Mineral Content
Olivine, Plagioclase, Pyroxene
  
Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite
  
Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
  
Au, CaO, Carbon Dioxide, Cu, Fe, MgO
  
Transformation
  
  
Metamorphism
Yes
  
Yes
  
Types of Metamorphism
Impact Metamorphism
  
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
  
Weathering
Yes
  
No
  
Types of Weathering
Biological Weathering
  
Not Applicable
  
Erosion
No
  
No
  
Types of Erosion
Not Applicable
  
Not Applicable
  
Hawaiite and Skarn Formation
Formation of rocks is a long process and hence, Hawaiite and Skarn formation sounds very interesting. According to the formation, all rocks are divided into :Igneous Rocks, Fossil Rocks and Metamorphic Rocks. Igneous rocks form by crystallization of magma or lava. The magma is made up of various components of pre-existing rocks which have been subjected to melting either at subduction zones or within the Earth's mantle. Igneous rocks are generally seen at mid ocean ridges or in intra-plate hotspots. Sedimentary rocks are formed when sediments accumulate gradually. As the sediments are buried they get compacted as more and more material is deposited on top. Eventually the sediments become so dense that they form a rock. Metamorphic rocks are rocks which once existed as igneous or sedimentary rocks but have been subjected to varying degrees of pressure and heat within the Earth's crust. Get to know all about formation of Hawaiite and Skarn, composition of Hawaiite and Skarn and their transformation.