×

Ganister
Ganister

Anorthosite
Anorthosite



ADD
Compare
X
Ganister
X
Anorthosite

Formation of Ganister and Anorthosite

1 Formation
1.1 Formation
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
1.2 Composition
1.2.1 Mineral Content
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
1.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
1.3 Transformation
1.3.1 Metamorphism
1.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Contact Metamorphism
1.3.3 Weathering
1.3.4 Types of Weathering
Biological Weathering
Biological Weathering
1.3.5 Erosion
1.3.6 Types of Erosion
Water Erosion, Wind Erosion
Chemical Erosion, Wind Erosion

Ganister and Anorthosite Formation

Formation of rocks is a long process and hence, Ganister and Anorthosite formation sounds very interesting. According to the formation, all rocks are divided into :Igneous Rocks, Fossil Rocks and Metamorphic Rocks. Igneous rocks form by crystallization of magma or lava. The magma is made up of various components of pre-existing rocks which have been subjected to melting either at subduction zones or within the Earth's mantle. Igneous rocks are generally seen at mid ocean ridges or in intra-plate hotspots. Sedimentary rocks are formed when sediments accumulate gradually. As the sediments are buried they get compacted as more and more material is deposited on top. Eventually the sediments become so dense that they form a rock. Metamorphic rocks are rocks which once existed as igneous or sedimentary rocks but have been subjected to varying degrees of pressure and heat within the Earth's crust. Get to know all about formation of Ganister and Anorthosite, composition of Ganister and Anorthosite and their transformation.