Home
×

Epidosite
Epidosite

Wackestone
Wackestone



ADD
Compare
X
Epidosite
X
Wackestone

Epidosite vs Wackestone

1 Definition
1.1 Definition
Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt
A carbonate rock which is matrix supported and contains over 10% allochems in a carbonate mud matrix.
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
Not Available
From the English mud and stone, from low German mudde and stainaz
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Clastic
2.2 Color
Black, Brown, Light to Dark Grey
Black, Blue, Brown, Green, Grey, Orange, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Rough and Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Facing Stone, Garden Decoration, Roof Tiles
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
Cement Manufacture, Construction Aggregate, for Road Aggregate, Making natural cement, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Cemetery Markers, Pottery
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Marl, Shale and Argillite
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Available in Lots of Colors and Patterns, Smooth to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Epidosite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Wackestone is a type of sedimentary rock formed when a river carries or transports pieces of broken rock as it flows. These particles settle down and are then compacted due to high temperature and pressure hence forming Wackestone.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Biotite, Chlorite, Feldspar, Micas, Muscovite or Illite, Plagioclase, Pyrite, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
2-3
6.1.2 Grain Size
Fine to Coarse Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Not Available
Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
2.3
2.6
6.1.10 Specific Gravity
2.8-3
2.2-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.4-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.39 kJ/Kg K
Rank: 23 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Bangladesh, China, India, Russia
7.1.2 Africa
South Africa
Ethiopia, Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Iceland
Austria, France, Germany, Greece, Italy, Romania, Scotland, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand, Queensland, Victoria, Western Australia

Epidosite vs Wackestone Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Epidosite and Wackestone Reserves. Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt. A carbonate rock which is matrix supported and contains over 10% allochems in a carbonate mud matrix.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Epidosite vs Wackestone information and Epidosite vs Wackestone characteristics in the upcoming sections.

Epidosite vs Wackestone Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Epidosite vs Wackestone characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Epidosite and Properties of Wackestone. Learn more about Epidosite vs Wackestone in the next section. The interior uses of Epidosite include Decorative aggregates, Floor tiles, Homes, Hotels and Interior decoration whereas the interior uses of Wackestone include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Epidosite and Wackestone, they have various applications in construction industry. The uses of Epidosite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Wackestone include Cement manufacture, Construction aggregate, For road aggregate, Making natural cement, Raw material for the manufacture of mortar.

More about Epidosite and Wackestone

Here you can know more about Epidosite and Wackestone. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Epidosite and Wackestone consists of mineral content and compound content. The mineral content of Epidosite includes Olivine, Plagioclase, Pyroxene and mineral content of Wackestone includes Biotite, Chlorite, Feldspar, Micas, Muscovite or Illite, Plagioclase, Pyrite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Epidosite vs Wackestone, the texture, color and appearance plays an important role in determining the type of rock. Epidosite is available in black, brown, light to dark grey colors whereas, Wackestone is available in black, blue, brown, green, grey, orange, red, white, yellow colors. Appearance of Epidosite is Dull and Soft and that of Wackestone is Rough and Dull. Properties of rock is another aspect for Epidosite vs Wackestone. The hardness of Epidosite is 6 and that of Wackestone is 2-3. The types of Epidosite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Wackestone are Marl, Shale and Argillite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Epidosite is white to grey while that of Wackestone is white. The specific heat capacity of Epidosite is Not Available and that of Wackestone is 0.39 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Epidosite is heat resistant, pressure resistant, wear resistant whereas Wackestone is heat resistant, impact resistant.