Home
Compare Rocks


Epidosite vs Adamellite


Adamellite vs Epidosite


Definition

Definition
Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt   
Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz   

History
  
  

Origin
Unknown   
Italy   

Discoverer
Unknown   
Unknown   

Etymology
Not Available   
From German adamellit and from Monte Adamello, a mountain in Italy, its locality   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Volcanic   
Plutonic   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Opaque Rock   

Texture

Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular   
Porphyritic   

Color
Black, Brown, Light to Dark Grey   
Black, Grey, Orange, Pink, White   

Maintenance
Less   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
Yes   
Yes   

Acid Resistant
No   
Yes   

Appearance
Dull and Soft   
Veined or Pebbled   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Interior Decoration   
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Kitchens, Stair Treads   

Exterior Uses
As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   
As Building Stone, As Facing Stone, Bridges, Paving Stone, Near Swimming Pools, Office Buildings, Resorts   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone   
As Dimension Stone   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
Commemorative Tablets, Creating Artwork   
Curling, Gemstone, Laboratory bench tops, Tombstones   

Types

Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite   
Not Available   

Features
Has High structural resistance against erosion and climate, Very fine grained rock   
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Epidosite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   
Adamellite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma and is a variety of Monzogranite.   

Composition
  
  

Mineral Content
Olivine, Plagioclase, Pyroxene   
Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism   
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Biological Weathering   

Erosion
No   
Yes   

Types of Erosion
Not Applicable   
Chemical Erosion, Glacier Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
6   
6-7   

Grain Size
Fine to Coarse Grained   
Coarse Grained   

Fracture
Conchoidal   
Not Available   

Streak
White to Grey   
White   

Porosity
Less Porous   
Less Porous   

Luster
Not Available   
Dull to Grainy with Sporadic parts Pearly and Vitreous   

Compressive Strength
Not Available   
175.00 N/mm2   
13

Cleavage
Not Available   
Not Available   

Toughness
2.3   
Not Available   

Specific Gravity
2.8-3   
2.6-2.7   

Transparency
Opaque   
Opaque   

Density
Not Available   
2.6-2.8 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.79 kJ/Kg K   
16

Resistance
Heat Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
India, Russia   
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   

Africa
South Africa   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Iceland   
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela   

Others
Not Yet Found   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada, USA   

South America
Brazil   
Not Yet Found   

Deposits in Oceania Continent
  
  

Australia
Not Yet Found   
Not Yet Found   

Definition >>
<< All

Epidosite vs Adamellite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Epidosite and Adamellite Reserves. Epidosite is a highly altered epidote and quartz bearing rock which is a type of metasomatite, essentially altered basalt. Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Epidosite vs Adamellite information and Epidosite vs Adamellite characteristics in the upcoming sections.

Compare Igneous Rocks

Epidosite vs Adamellite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Epidosite vs Adamellite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Epidosite and Properties of Adamellite. Learn more about Epidosite vs Adamellite in the next section. The interior uses of Epidosite include Decorative aggregates, Floor tiles, Homes, Hotels and Interior decoration whereas the interior uses of Adamellite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Kitchens and Stair treads. Due to some exceptional properties of Epidosite and Adamellite, they have various applications in construction industry. The uses of Epidosite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Adamellite include As dimension stone.

More about Epidosite and Adamellite

Here you can know more about Epidosite and Adamellite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Epidosite and Adamellite consists of mineral content and compound content. The mineral content of Epidosite includes Olivine, Plagioclase, Pyroxene and mineral content of Adamellite includes Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Epidosite vs Adamellite, the texture, color and appearance plays an important role in determining the type of rock. Epidosite is available in black, brown, light to dark grey colors whereas, Adamellite is available in black, grey, orange, pink, white colors. Appearance of Epidosite is Dull and Soft and that of Adamellite is Veined or Pebbled. Properties of rock is another aspect for Epidosite vs Adamellite. The hardness of Epidosite is 6 and that of Adamellite is 6-7. The types of Epidosite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Adamellite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Epidosite is white to grey while that of Adamellite is white. The specific heat capacity of Epidosite is Not Available and that of Adamellite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Epidosite is heat resistant, pressure resistant, wear resistant whereas Adamellite is heat resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks