×

Diabase
Diabase

Latite
Latite



ADD
Compare
X
Diabase
X
Latite

Diabase vs Latite

Add ⊕
1 Definition
1.1 Definition
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
1.2 History
1.2.1 Origin
Germany
Italy
1.2.2 Discoverer
Christian Leopold von Buch
Unknown
1.3 Etymology
From Greek di + base
From the Latin word latium
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic, Granular
Aphanitic to Porphyritic
2.2 Color
Dark Grey to Black
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Vesicular
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Rhomb porphyries
4.2 Features
Smooth to touch
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Stonehenge in English county of Wiltshire
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
Alkali feldspar, Biotite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
CaO, Cl, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
75-5.5
Coal
1 7
6.1.2 Grain Size
Fine to Medium Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Not Available
Subvitreous to Dull
6.1.7 Compressive Strength
225.00 N/mm2310.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
1.6
2.7
6.1.10 Specific Gravity
2.86-2.872.86
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.7-3.3 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.92 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
Not Yet Found
7.1.2 Africa
South Africa, Tanzania
Not Yet Found
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Bulgaria
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Argentina, Brazil, Colombia, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland, Western Australia
Not Yet Found

Diabase vs Latite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Diabase and Latite Reserves. Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Diabase vs Latite information and Diabase vs Latite characteristics in the upcoming sections.

Diabase vs Latite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Diabase vs Latite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Diabase and Properties of Latite. Learn more about Diabase vs Latite in the next section. The interior uses of Diabase include Countertops, Decorative aggregates, Homes, Interior decoration and Kitchens whereas the interior uses of Latite include Decorative aggregates, Entryways and Interior decoration. Due to some exceptional properties of Diabase and Latite, they have various applications in construction industry. The uses of Diabase in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Latite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Diabase and Latite

Here you can know more about Diabase and Latite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Diabase and Latite consists of mineral content and compound content. The mineral content of Diabase includes Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine and mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Diabase vs Latite, the texture, color and appearance plays an important role in determining the type of rock. Diabase is available in dark grey to black colors whereas, Latite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Diabase is Vesicular and that of Latite is Rough. Properties of rock is another aspect for Diabase vs Latite. The hardness of Diabase is 7 and that of Latite is 5-5.5. The types of Diabase are Not Available whereas types of Latite are Rhomb porphyries. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Diabase is black while that of Latite is white. The specific heat capacity of Diabase is Not Available and that of Latite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Diabase is heat resistant, impact resistant, pressure resistant, wear resistant whereas Latite is heat resistant, pressure resistant.