Home
×

Diabase
Diabase

Anthracite
Anthracite



ADD
Compare
X
Diabase
X
Anthracite

Diabase and Anthracite

1 Definition
1.1 Definition
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
1.2 History
1.2.1 Origin
Germany
Pennsylvania, U.S.
1.2.2 Discoverer
Christian Leopold von Buch
Unknown
1.3 Etymology
From Greek di + base
From Greek anthrakites, from anthrax, anthrak meaning coal
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic, Granular
Amorphous, Glassy
2.2 Color
Dark Grey to Black
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Vesicular
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
3.2.2 Medical Industry
Not Yet Used
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
4 Types
4.1 Types
Not Available
Semi-anthracite and Meta-anthracite
4.2 Features
Smooth to touch
Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Stonehenge in English county of Wiltshire
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
5.2 Composition
5.2.1 Mineral Content
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
Calcite, Clay, Clay Minerals
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
1-1.5
6.1.2 Grain Size
Fine to Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
Black
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Not Available
Shiny
6.1.7 Compressive Strength
What Is Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Non-Existent
6.1.9 Toughness
1.6
Not Available
6.1.10 Specific Gravity
2.86-2.87
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.7-3.3 g/cm3
1.25-2.5 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
1.32 kJ/Kg K
Rank: 4 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
South Africa, Tanzania
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Brazil, Colombia, Venezuela
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland, Western Australia
New South Wales, Queensland, Victoria

All about Diabase and Anthracite Properties

Know all about Diabase and Anthracite properties here. All properties of rocks are important as they define the type of rock and its application. Diabase belongs to Igneous Rocks while Anthracite belongs to Metamorphic Rocks.Texture of Diabase is Aphanitic, Granular whereas that of Anthracite is Amorphous, Glassy. Diabase appears Vesicular and Anthracite appears Veined or Pebbled. The luster of Diabase is not available while that of Anthracite is shiny. Diabase is available in dark grey to black colors whereas Anthracite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Diabase are an oil and gas reservoir, cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones and that of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry.