Home
Compare Rocks


Borolanite vs Tuff


Tuff vs Borolanite


Definition

Definition
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix   
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption   

History
  
  

Origin
Scotland   
Italy   

Discoverer
Unknown   
Unknown   

Etymology
From Alkalic Igneous complex near Loch Borralan in northwest Scotland   
From a Latin word tophous then in Italian tufo and finally tuff   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Volcanic   

Other Categories
Fine Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Granular   
Clastic, Pyroclastic   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Brown, Grey, Yellow   

Maintenance
Less   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
No   
Yes   

Stain Resistant
No   
No   

Wind Resistant
Yes   
No   

Acid Resistant
Yes   
No   

Appearance
Banded and Foilated   
Dull, Vesicular and Foilated   

Uses

Architecture
  
  

Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   
Building houses or walls, Construction Aggregate   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts   
Artifacts, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
Cemetery Markers   
Creating Artwork   

Types

Types
Not Available   
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.   

Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   
Always found as volcanic pipes over deep continental crust   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Easter Island in the Polynesian Triangle, Pacific Ocean   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.   

Composition
  
  

Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   
Calcite, Chlorite   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Hydrogen Sulfide, Sulfur Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Chemical Weathering, Mechanical Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Wind Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
4-6   

Grain Size
Fine Grained   
Fine Grained   

Fracture
Conchoidal to Uneven   
Uneven   

Streak
White   
White   

Porosity
Less Porous   
Highly Porous   

Luster
Greasy to Dull   
Vitreous to Dull   

Compressive Strength
150.00 N/mm2   
14
243.80 N/mm2   
5

Cleavage
Poor   
Not Available   

Toughness
Not Available   
Not Available   

Specific Gravity
2.6   
2.73   

Transparency
Translucent to Opaque   
Opaque   

Density
2.6 g/cm3   
1-1.8 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.20 kJ/Kg K   
25

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda   

Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom   

Others
Greenland   
Antarctica, Hawaii Islands   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada, Costa Rica, Panama, USA   

South America
Brazil, Chile, Colombia, Uruguay, Venezuela   
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia   
Central Australia, Western Australia   

Definition >>
<< All

Borolanite vs Tuff Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Borolanite and Tuff Reserves. Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix. Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Borolanite vs Tuff information and Borolanite vs Tuff characteristics in the upcoming sections.

Compare Igneous Rocks

Borolanite vs Tuff Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Borolanite vs Tuff characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Borolanite and Properties of Tuff. Learn more about Borolanite vs Tuff in the next section. The interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Tuff include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Borolanite and Tuff, they have various applications in construction industry. The uses of Borolanite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Tuff include Building houses or walls, Construction aggregate.

More about Borolanite and Tuff

Here you can know more about Borolanite and Tuff. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Borolanite and Tuff consists of mineral content and compound content. The mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Tuff includes Calcite, Chlorite. You can also check out the list of all Igneous Rocks. When we have to compare Borolanite vs Tuff, the texture, color and appearance plays an important role in determining the type of rock. Borolanite is available in brown, buff, cream, green, grey, pink, white colors whereas, Tuff is available in brown, grey, yellow colors. Appearance of Borolanite is Banded and Foilated and that of Tuff is Dull, Vesicular and Foilated. Properties of rock is another aspect for Borolanite vs Tuff. The hardness of Borolanite is 5.5-6 and that of Tuff is 4-6. The types of Borolanite are Not Available whereas types of Tuff are Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Borolanite and Tuff is white. The specific heat capacity of Borolanite is Not Available and that of Tuff is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Borolanite is heat resistant, impact resistant, wear resistant whereas Tuff is heat resistant, impact resistant, pressure resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks