Home
×

Benmoreite
Benmoreite

Anthracite
Anthracite



ADD
Compare
X
Benmoreite
X
Anthracite

Benmoreite and Anthracite

1 Definition
1.1 Definition
An iron rich extrusive rock found as a member of the alkali basalt magma series
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
1.2 History
1.2.1 Origin
Isle of Mull, Scotland
Pennsylvania, U.S.
1.2.2 Discoverer
Ben More
Unknown
1.3 Etymology
From the name of discoverer, Ben More
From Greek anthrakites, from anthrax, anthrak meaning coal
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular
Amorphous, Glassy
2.2 Color
Black, Brown, Light to Dark Grey
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
3.2.2 Medical Industry
Not Yet Used
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork, Curling
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt
Semi-anthracite and Meta-anthracite
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Benmoreite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase
Calcite, Clay, Clay Minerals
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
1-1.5
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Earthy
Shiny
6.1.7 Compressive Strength
What Is Flint
37.40 N/mm2
Rank: 28 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
2.3
Not Available
6.1.10 Specific Gravity
2.8-3
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.9-3.1 g/cm3
1.25-2.5 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.84 kJ/Kg K
Rank: 15 (Overall)
1.32 kJ/Kg K
Rank: 4 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
South Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Iceland
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, Victoria

All about Benmoreite and Anthracite Properties

Know all about Benmoreite and Anthracite properties here. All properties of rocks are important as they define the type of rock and its application. Benmoreite belongs to Igneous Rocks while Anthracite belongs to Metamorphic Rocks.Texture of Benmoreite is Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular whereas that of Anthracite is Amorphous, Glassy. Benmoreite appears Rough and Dull and Anthracite appears Veined or Pebbled. The luster of Benmoreite is earthy while that of Anthracite is shiny. Benmoreite is available in black, brown, light to dark grey colors whereas Anthracite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Benmoreite are commemorative tablets, creating artwork, curling and that of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry.

Let Others Know
×