×

Basalt
Basalt

Tephrite
Tephrite



ADD
Compare
X
Basalt
X
Tephrite

Basalt vs Tephrite

Add ⊕
1 Definition
1.1 Definition
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
Tephrite is an aphanitic to porphyritic textured, volcanic igneous rock
1.2 History
1.2.1 Origin
Egypt
Germany
1.2.2 Discoverer
Georgius Agricola
Van Tooren
1.3 Etymology
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
From Greek tephra, ashes from Indo-European base, to burn
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Light to Dark Grey
Black, Brown, Colourless, Green, Grey, White
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull and Soft
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing, Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
Production of Lime, Soil Conditioner
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
Tephrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Alkali feldspar, Nepheline, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Contact Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Available
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
66.5
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White to Grey
Bluish Black
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Not Available
Subvitreous to Dull
6.1.7 Compressive Strength
37.40 N/mm290.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Crenulation and Pervasive
6.1.9 Toughness
2.3
2.4
6.1.10 Specific Gravity
2.8-32.86
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.9-3.1 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.84 kJ/Kg K0.92 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
South Africa
Namibia, Uganda
7.1.3 Europe
Iceland
Germany, Hungary, Italy, Portugal, Spain
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Western Australia

Basalt vs Tephrite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Basalt and Tephrite Reserves. Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth. Tephrite is an aphanitic to porphyritic textured, volcanic igneous rock. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Basalt vs Tephrite information and Basalt vs Tephrite characteristics in the upcoming sections.

Basalt vs Tephrite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Basalt vs Tephrite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Basalt and Properties of Tephrite. Learn more about Basalt vs Tephrite in the next section. The interior uses of Basalt include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Tephrite include Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Basalt and Tephrite, they have various applications in construction industry. The uses of Basalt in construction industry include Arrowheads, As dimension stone, Cobblestones, Cutting tool, Rail track ballast, Roadstone and that of Tephrite include Landscaping.

More about Basalt and Tephrite

Here you can know more about Basalt and Tephrite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Basalt and Tephrite consists of mineral content and compound content. The mineral content of Basalt includes Olivine, Plagioclase, Pyroxene and mineral content of Tephrite includes Alkali feldspar, Nepheline, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Basalt vs Tephrite, the texture, color and appearance plays an important role in determining the type of rock. Basalt is available in black, brown, light to dark grey colors whereas, Tephrite is available in black, brown, colourless, green, grey, white colors. Appearance of Basalt is Dull and Soft and that of Tephrite is Vesicular. Properties of rock is another aspect for Basalt vs Tephrite. The hardness of Basalt is 6 and that of Tephrite is 6.5. The types of Basalt are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite whereas types of Tephrite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Basalt is white to grey while that of Tephrite is bluish black. The specific heat capacity of Basalt is 0.84 kJ/Kg K and that of Tephrite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Basalt is heat resistant, pressure resistant, wear resistant whereas Tephrite is heat resistant, impact resistant.