Home
×

Anorthosite
Anorthosite

Basalt
Basalt



ADD
Compare
X
Anorthosite
X
Basalt

Anorthosite vs Basalt

1 Definition
1.1 Definition
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
1.2 History
1.2.1 Origin
Unknown
Egypt
1.2.2 Discoverer
Unknown
Georgius Agricola
1.3 Etymology
From French anorthose plagioclase + -ite1
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Glassy
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
2.2 Color
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture, Small Figurines
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
4 Types
4.1 Types
Proterozoic Anorthosite and Archean Anorthosite
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Not Available
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
6
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
White to Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Pearly to Subvitreous
Not Available
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
37.40 N/mm2
Rank: 28 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Not Available
6.1.9 Toughness
Not Available
2.3
6.1.10 Specific Gravity
2.62-2.82
2.8-3
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.7-4 g/cm3
2.9-3.1 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
India, Russia
7.1.2 Africa
Not Yet Found
South Africa
7.1.3 Europe
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, USA
7.2.2 South America
Bolivia, Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, South Australia, Western Australia
Not Yet Found

Anorthosite vs Basalt Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Anorthosite and Basalt Reserves. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Anorthosite vs Basalt information and Anorthosite vs Basalt characteristics in the upcoming sections.

Anorthosite vs Basalt Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Anorthosite vs Basalt characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Anorthosite and Properties of Basalt. Learn more about Anorthosite vs Basalt in the next section. The interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Basalt include Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Anorthosite and Basalt, they have various applications in construction industry. The uses of Anorthosite in construction industry include As dimension stone, Cement manufacture, For road aggregate and that of Basalt include Arrowheads, As dimension stone, Cobblestones, Cutting tool, Rail track ballast, Roadstone.

More about Anorthosite and Basalt

Here you can know more about Anorthosite and Basalt. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Anorthosite and Basalt consists of mineral content and compound content. The mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene and mineral content of Basalt includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Anorthosite vs Basalt, the texture, color and appearance plays an important role in determining the type of rock. Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors whereas, Basalt is available in black, brown, light to dark grey colors. Appearance of Anorthosite is Layered, Banded, Veined and Shiny and that of Basalt is Dull and Soft. Properties of rock is another aspect for Anorthosite vs Basalt. The hardness of Anorthosite is 5-6 and that of Basalt is 6. The types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite whereas types of Basalt are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Anorthosite is white while that of Basalt is white to grey. The specific heat capacity of Anorthosite is 0.84 kJ/Kg K and that of Basalt is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant whereas Basalt is heat resistant, pressure resistant, wear resistant.