Home
×

Anorthosite
Anorthosite

Dacite
Dacite



ADD
Compare
X
Anorthosite
X
Dacite

Anorthosite and Dacite

1 Definition
1.1 Definition
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
1.2 History
1.2.1 Origin
Unknown
Romania and Moldova, Europe
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French anorthose plagioclase + -ite1
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Glassy
Aphanitic to Porphyritic
2.2 Color
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
Bluish - Grey, Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Proterozoic Anorthosite and Archean Anorthosite
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Host Rock for Lead, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
2-2.25
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Pearly to Subvitreous
Subvitreous to Dull
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Perfect
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.62-2.82
2.86-2.87
6.1.11 Transparency
Translucent
Translucent
6.1.12 Density
2.7-4 g/cm3
2.77-2.771 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.84 kJ/Kg K
Rank: 15 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Not Yet Found
7.1.2 Africa
Not Yet Found
Not Yet Found
7.1.3 Europe
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
France, Greece, Romania, Scotland, Spain
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
USA
7.2.2 South America
Bolivia, Colombia
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, South Australia, Western Australia
New Zealand, South Australia, Western Australia

All about Anorthosite and Dacite Properties

Know all about Anorthosite and Dacite properties here. All properties of rocks are important as they define the type of rock and its application. Anorthosite and Dacite belong to Igneous Rocks.Texture of Anorthosite is Foliated, Glassy whereas that of Dacite is Aphanitic to Porphyritic. Anorthosite appears Layered, Banded, Veined and Shiny and Dacite appears Vesicular. The luster of Anorthosite is pearly to subvitreous while that of Dacite is subvitreous to dull. Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors whereas Dacite is available in bluish - grey, brown, grey, light to dark grey colors. The commercial uses of Anorthosite are creating artwork, curling and that of Dacite are commemorative tablets, creating artwork.

Let Others Know
×