Home
×

Adakite
Adakite

Banded iron formation
Banded iron formation



ADD
Compare
X
Adakite
X
Banded iron formation

Adakite vs Banded iron formation

1 Definition
1.1 Definition
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age
1.2 History
1.2.1 Origin
Adak, Aleutian Islands
Western Australia, Minnesota
1.2.2 Discoverer
Defant and Drummond
Unknown
1.3 Etymology
From Adak, Aleutian Islands
From its formation process
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Banded, Trellis
2.2 Color
Black, Brown, Light to Dark Grey
Red, Reddish Brown
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Whetstones
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Used for flooring, stair treads, borders and window sills.
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Pottery, Used in aquariums
As a touchstone, Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Algoma-type , Lake Superior-type, Superior-type and Taconite
4.2 Features
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
The banded iron layers are formed in sea water when oxygen is released by photosynthetic cyano-bacteria. The oxygen then combines with dissolved iron in ocean to form insoluble iron oxides, which precipitated out, forming a thin layer of banded iron formation on ocean floor.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Hematite, Magnetite, Quartz
5.2.2 Compound Content
Aluminium Oxide, MgO, Silicon Dioxide
Fe, Iron(III) Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Sea Erosion, Water Erosion
Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
5.5-6
6.1.2 Grain Size
Fine to Medium Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Grainy, Pearly and Vitreous
Earthy
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Imperfect
6.1.9 Toughness
Not Available
1.5
6.1.10 Specific Gravity
Not Available
5.0-5.3
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
Not Available
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
3.20 kJ/Kg K
Rank: 1 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Iran, Iraq, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
Ethiopia, Somalia, South Africa
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Iceland
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, South Australia, Western Australia

Adakite vs Banded iron formation Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Adakite and Banded iron formation Reserves. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Adakite vs Banded iron formation information and Adakite vs Banded iron formation characteristics in the upcoming sections.

Adakite vs Banded iron formation Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Adakite vs Banded iron formation characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Adakite and Properties of Banded iron formation. Learn more about Adakite vs Banded iron formation in the next section. The interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Banded iron formation include Decorative aggregates and Homes. Due to some exceptional properties of Adakite and Banded iron formation, they have various applications in construction industry. The uses of Adakite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Banded iron formation include As dimension stone, Used for flooring, stair treads, borders and window sills..

More about Adakite and Banded iron formation

Here you can know more about Adakite and Banded iron formation. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Adakite and Banded iron formation consists of mineral content and compound content. The mineral content of Adakite includes Olivine, Plagioclase, Pyroxene and mineral content of Banded iron formation includes Hematite, Magnetite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Adakite vs Banded iron formation, the texture, color and appearance plays an important role in determining the type of rock. Adakite is available in black, brown, light to dark grey colors whereas, Banded iron formation is available in red, reddish brown colors. Appearance of Adakite is Dull and Soft and that of Banded iron formation is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Adakite vs Banded iron formation. The hardness of Adakite is 3-4 and that of Banded iron formation is 5.5-6. The types of Adakite are Not Available whereas types of Banded iron formation are Algoma-type , Lake Superior-type, Superior-type and Taconite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Adakite is bluish black while that of Banded iron formation is white. The specific heat capacity of Adakite is Not Available and that of Banded iron formation is 3.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Adakite is heat resistant, pressure resistant, wear resistant whereas Banded iron formation is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×