×

Tephrite
Tephrite

Lignite
Lignite



ADD
Compare
X
Tephrite
X
Lignite

Tephrite and Lignite

Add ⊕
1 Definition
1.1 Definition
Tephrite is an aphanitic to porphyritic textured, volcanic igneous rock
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
1.2 History
1.2.1 Origin
Germany
France
1.2.2 Discoverer
Van Tooren
Unknown
1.3 Etymology
From Greek tephra, ashes from Indo-European base, to burn
From French, Latin lignum wood + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Amorphous, Glassy
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Vesicular
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
Landscaping
for Road Aggregate, Steel Production
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Production of Lime, Soil Conditioner
Electricity Generation
4 Types
4.1 Types
Not Available
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
4.2 Features
Host Rock for Lead
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Tephrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Nepheline, Plagioclase, Pyroxene
Not Available
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO, Silicon Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.51
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
Bluish Black
Black
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
90.00 N/mm2NA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Crenulation and Pervasive
Non-Existent
6.1.9 Toughness
2.4
Not Available
6.1.10 Specific Gravity
2.861.1-1.4
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3800-801 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg K1.26 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Namibia, Uganda
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Germany, Hungary, Italy, Portugal, Spain
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Not Yet Found
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, Queensland, Victoria

All about Tephrite and Lignite Properties

Know all about Tephrite and Lignite properties here. All properties of rocks are important as they define the type of rock and its application. Tephrite belongs to Igneous Rocks while Lignite belongs to Sedimentary Rocks.Texture of Tephrite is Aphanitic to Porphyritic whereas that of Lignite is Amorphous, Glassy. Tephrite appears Vesicular and Lignite appears Veined or Pebbled. The luster of Tephrite is subvitreous to dull while that of Lignite is dull to vitreous to submetallic. Tephrite is available in black, brown, colourless, green, grey, white colors whereas Lignite is available in black, brown, dark brown, grey, light to dark grey colors. The commercial uses of Tephrite are production of lime, soil conditioner and that of Lignite are electricity generation.