×

Serpentinite
Serpentinite

Kenyte
Kenyte



ADD
Compare
X
Serpentinite
X
Kenyte

Serpentinite vs Kenyte

1 Definition
1.1 Definition
A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix
1.2 History
1.2.1 Origin
USA
Mount Kenya
1.2.2 Discoverer
Unknown
J. W. Gregory
1.3 Etymology
From English word serpentinization.
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Glassy, Granular
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Dull
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Jadeitite
Not Available
4.2 Features
Host Rock for Lead
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Serpentinite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Ca, CaO, Carbon Dioxide, KCl, MgO, Sulfur Dioxide, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-55.5-6
Coal
1 7
6.1.2 Grain Size
Very fine-grained
Fine Grained
6.1.3 Fracture
Uneven
Conchoidal to Uneven
6.1.4 Streak
White, Greenish White or Grey
White, Greenish White or Grey
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Waxy and Dull
Greasy to Dull
6.1.7 Compressive Strength
310.00 N/mm2150.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Irregular
Poor
6.1.9 Toughness
7
Not Available
6.1.10 Specific Gravity
2.79-32.6
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.5-3 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.95 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Saudi Arabia, Singapore, South Korea
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
7.1.2 Africa
Ethiopia, Western Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
England, Georgia, Switzerland, United Kingdom
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, USA
7.2.2 South America
Colombia
Brazil, Chile, Colombia, Uruguay, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New South Wales, New Zealand, Western Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia

Serpentinite vs Kenyte Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Serpentinite and Kenyte Reserves. A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Serpentinite vs Kenyte information and Serpentinite vs Kenyte characteristics in the upcoming sections.

Serpentinite vs Kenyte Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Serpentinite vs Kenyte characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Serpentinite and Properties of Kenyte. Learn more about Serpentinite vs Kenyte in the next section. The interior uses of Serpentinite include Decorative aggregates and Interior decoration whereas the interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Serpentinite and Kenyte, they have various applications in construction industry. The uses of Serpentinite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Kenyte include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Serpentinite and Kenyte

Here you can know more about Serpentinite and Kenyte. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Serpentinite and Kenyte consists of mineral content and compound content. The mineral content of Serpentinite includes Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides and mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Metamorphic Rocks. When we have to compare Serpentinite vs Kenyte, the texture, color and appearance plays an important role in determining the type of rock. Serpentinite is available in black, brown, colourless, green, grey, white colors whereas, Kenyte is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Serpentinite is Rough and Dull and that of Kenyte is Banded and Foilated. Properties of rock is another aspect for Serpentinite vs Kenyte. The hardness of Serpentinite is 3-5 and that of Kenyte is 5.5-6. The types of Serpentinite are Jadeitite whereas types of Kenyte are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Serpentinite and Kenyte is white, greenish white or grey. The specific heat capacity of Serpentinite is 0.95 kJ/Kg K and that of Kenyte is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Serpentinite is heat resistant whereas Kenyte is heat resistant, impact resistant, wear resistant.