×

Serpentinite
Serpentinite

Gneiss
Gneiss



ADD
Compare
X
Serpentinite
X
Gneiss

Serpentinite vs Gneiss

1 Definition
1.1 Definition
A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From English word serpentinization.
From the Middle High German verb gneist (to spark; so called because the rock glitters)
1.4 Class
Metamorphic Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Banded, Foliated, Platy
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Black, Brown, Pink, Red, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Dull
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
4 Types
4.1 Types
Jadeitite
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
4.2 Features
Host Rock for Lead
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Konark Sun Temple in India, Washington Monument, US
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Serpentinite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
5.2 Composition
5.2.1 Mineral Content
Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Ca, CaO, Carbon Dioxide, KCl, MgO, Sulfur Dioxide, Sulphur
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-57
Coal
1 7
6.1.2 Grain Size
Very fine-grained
Medium to Coarse Grained
6.1.3 Fracture
Uneven
Irregular
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Waxy and Dull
Dull
6.1.7 Compressive Strength
310.00 N/mm2125.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Irregular
Poor
6.1.9 Toughness
7
1.2
6.1.10 Specific Gravity
2.79-32.5-2.7
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.5-3 g/cm32.6-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.95 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Saudi Arabia, Singapore, South Korea
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
Ethiopia, Western Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
England, Georgia, Switzerland, United Kingdom
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Colombia
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New South Wales, New Zealand, Western Australia
New South Wales, New Zealand, Queensland, Victoria

Serpentinite vs Gneiss Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Serpentinite and Gneiss Reserves. A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Serpentinite vs Gneiss information and Serpentinite vs Gneiss characteristics in the upcoming sections.

Serpentinite vs Gneiss Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Serpentinite vs Gneiss characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Serpentinite and Properties of Gneiss. Learn more about Serpentinite vs Gneiss in the next section. The interior uses of Serpentinite include Decorative aggregates and Interior decoration whereas the interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Serpentinite and Gneiss, they have various applications in construction industry. The uses of Serpentinite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Gneiss include As dimension stone.

More about Serpentinite and Gneiss

Here you can know more about Serpentinite and Gneiss. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Serpentinite and Gneiss consists of mineral content and compound content. The mineral content of Serpentinite includes Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides and mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon. You can also check out the list of all Metamorphic Rocks. When we have to compare Serpentinite vs Gneiss, the texture, color and appearance plays an important role in determining the type of rock. Serpentinite is available in black, brown, colourless, green, grey, white colors whereas, Gneiss is available in black, brown, pink, red, white colors. Appearance of Serpentinite is Rough and Dull and that of Gneiss is Foliated. Properties of rock is another aspect for Serpentinite vs Gneiss. The hardness of Serpentinite is 3-5 and that of Gneiss is 7. The types of Serpentinite are Jadeitite whereas types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Serpentinite and Gneiss is white, greenish white or grey. The specific heat capacity of Serpentinite is 0.95 kJ/Kg K and that of Gneiss is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Serpentinite is heat resistant whereas Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant.